

Phase 2 Environmental Site Assessment, Parcel 15

Prepared for: Hydro Aluminium Kurri Kurri Pty Ltd

On behalf of:

Prepared by: ENVIRON Australia Pty Ltd

> Date: April 2015

Project Number: AS130348

Prepare	d by:	Authoris	ed by:
Name:	Steve Cadman	Name:	Fiona Robinson
Title:	Environmental Scientist	Title:	Manager - Hunter
Phone:	02 4962 5444	Phone:	02 4962 5444
Email:	scadman@environcorp.com	Email:	frobinson@environcorp.com
Signature:	Date: 21/4/15	Signature:	Japhing Date:21/4/15

This document is issued in confidence to Hydro Aluminium Kurri Kurri Australia Pty Ltd for the purposes of a Phase 2 Environmental Site Assessment. It should not be used for any other purpose. The scope of the Phase 2 Environmental Site Assessment was based on ENVIRON's proposal dated 18 November 2013.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

Specific assumptions and limitations identified by ENVIRON as being relevant are set out in the report. The methodology adopted and sources of information used by ENVIRON are outlined in our scope of work. ENVIRON has made no independent verification of this information beyond the agreed scope of works.

This report should be read in full.

© ENVIRON Australia Pty Ltd

Document File Name	Date Issued	Version	Author	Reviewer
AS130348 Phase 2 ESA – Parcel 15	October 2014	Draft 1	S Cadman	F Robinson
AS130348 Phase 2 ESA – Parcel 15	April 2015	Final	S Cadman	F Robinson
FINAL				
AS130348 Phase 2 ESA – Parcel 15	April 2015	Final	S Cadman	F Robinson
Final for Rezoning				

VERSION CONTROL RECORD

Contents

		Page
1	Introduction	6
1.1	Background	6
1.2	Objectives and Scope of Work	6
2	Site Description	8
2.1	Site Location	8
2.2	Site Setting	9
2.2.1	Topography	9
2.2.2	Regional Geology	9
2.2.3	Site Hydrology	9
2.2.4	Regional Hydrogeology	9
2.3	Site Sensitivity	10
3	Site History	11
4	Previous Investigations	13
4.1	Surface Water	13
4.1.1	ENVIRON	13
4.1.1	Hydro Routine Monitoring	13
5	Sampling and Analytical Quality Plan	14
5.1	Potential Areas and Contaminants of Concern	14
5.2	Data Quality Objectives and Data Quality Indicators	14
5.3	Sampling Design	14
5.3.1	Fluoride	14
5.3.2	Asbestos	15
5.3.3	Assessment of Fill	15
5.3.4	Surface Water	16
6	Basis for Assessment Criteria	17
6.1	Soil	17
6.2	Surface Water	21
6.2.1	Potential Beneficial Uses	21
6.2.2	Appropriate Criteria for Surface Water	21
7	Results	23
7.1	Site Walkover	23
7.2	Soil Investigations	24
7.2.1	Fluoride	24
7.2.1	Fill Investigation	24
7.3	Soil Results	26
7.4	Surface Water Results	27
7.5	Hazardous Materials Audit	27
7.6	Quality Assurance/ Quality Control	28

8	Site Characterisation	29
9	Conclusions and Recommendations	30
10	References	32
11 11.1	Limitations User Reliance	33 33

List of Figures

Figure 1:	Site Location Plan
Figure 2:	Location of Parcel 15 on the Masterplan
Figure 3:	Site Layout and Surface Soil Sampling Locations
Figure 4:	Test Pit Locations

List of Tables

Table 1:	Lot and Development Plans for Parcel 15.
Table 2:	Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation
	Levels
Table 3:	Soil Assessment Criteria for Vapour Intrusion – HSL D – Sand
Table 4:	ESLs and Management Limits for Petroleum Hydrocarbons in Soil
Table 5:	Health Screening Level for Asbestos Contamination in Soil (w/w)
Table 6:	Site Specific Soil Assessment Criteria for Fluoride
Table 7:	Summary of Intrusive Investigations
Table 8:	Summary of Soil Results

List of Appendices

Appendix A:	Surrounding Groundwater Bores
Appendix B:	Data from Previous Investigations
Appendix C:	Site Photographs
Appendix D:	Field Information Sheets
Appendix E:	Results Tables
Appendix F:	Laboratory Reports
Appendix G:	Test Pit Logs
Appendix H:	QA/QC Assessment
Appendix I:	Hazardous Materials Audit

Acronyms and Abbreviations

ACM	Asbestos Containing Materials
AHD	Australian Height Datum
ALS	Australian Laboratory Services
ANZECC	Australian and New Zealand Environment and Conservation Council
B(a)P	Benzo(a)pyrene
BGL	Below Ground Level
BTEX	Benzene, Toluene, Ethylbenzene & Xylenes (Monocyclic aromatic Hydrocarbons)
СТ	Certificate of Title
DEC	NSW Department of Environment and Conservation, now EPA
DP	Deposited Plan
DQI	Data Quality Indicator
DQO	Data Quality Objective
EIL	Ecological Investigation Level
EPA	NSW Environment Protection Authority
ESA F	Environmental Site Assessment
г GMU	Fluoride Groundwater Management Unit
GPS	Global Positioning System
Ha	Hectare
HIL	Health Investigation Level
HSL	Health Screening Level
HRA	Health Risk Assessment
km	Kilometres
LOR	Limit of Reporting
m	Metres
Mercury	Inorganic mercury unless noted otherwise
Metals	As: Arsenic, Cd: Cadmium, Cr: Chromium, Cu: Copper, Fe: Iron, Ni: Nickel, Pb: Lead, Zn:
	Zinc, Hg: Mercury, Se: Selenium
mg/kg	Milligrams per Kilogram
mg/L	Milligrams per Litre
m AHD	Metres relative to the Australian Height Datum
m BGL	Metres below ground level
m TOC	Metres below top of casing
ML ma/l	Megalitre, one million litres
mg/L NATA	Micrograms per Litre
NATA	National Association of Testing Authorities Not Calculated
ND	Not Detected
NEHF	National Environmental Health Forum
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NHMRC	National Health and Medical Research Council
NSW	New South Wales
n	Number of Samples
OH&S	Occupational Health & Safety
PAH	Polycyclic Aromatic Hydrocarbons
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
TRH	Total Recoverable Hydrocarbons
	Upper Confidence Limit
US EPA μg/L	United States Environment Protection Authority Micrograms per Litre
VENM	virgin excavated natural material
	On tables is "not calculated", "no criteria" or "not applicable"

Executive Summary

ENVIRON completed a Phase 2 Environmental Site Assessment at Parcel 15, located in the inner eastern portion of the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter. Parcel 15 is owned by Hydro Aluminium and currently comprises unused bushland, open flat unoccupied land and a motorcycle race track development.

The objectives of the assessment were to assess the potential for contamination at Parcel 15 based on historical and current land use and to assess the suitability of Parcel 15 for the purpose of general industrial (IN1) and environmental conservation (E2) land use.

The ESA comprised a site walkover, surface soil sampling, surface water sampling, intrusive investigation by backhoe in embankments and filled areas and completion of a hazardous The Phase 1 identified that contamination of Parcel 15 may have occurred from dust deposition due to the proximity of the Hydro smelter, illegal dumping due to the remoteness of the area and contamination from the development and use of the site as a Motocross and Speedway facility.

To assess for potential contaminants of concern on Parcel 15, ENVIRON completed a site walkover, surface soil sampling, surface water sampling, intrusive investigation by backhoe in embankments and filled areas and completion of a hazardous materials audit.

Surface soil sampling for soluble fluoride identified low and below guideline concentrations in all samples. These results indicate that the site has not been impacted by dust deposition from the smelter.

The site walkover identified the presence of fill materials, including potentially asbestos containing material (ACM) fragments on the eastern Speedway access track and within the Speedway spectator embankment. The Speedway facility was observed to contain piles of waste including tyres and demolition wastes, as well as unbunded drums of fuel or oils. Waste tyre stockpiles were present on the Motocross facility.

Soil sampling of filled soils on the Speedway spectator embankment and the eastern Motocross access track identified acceptable and below guideline concentrations for all analytes tested with the exception of asbestos. Fragments of bonded ACM were identified on the surface of the Speedway eastern access track.

Two samples, collected from the surface water ponds on Lot 419 and Lot 2, identified concentrations of copper, chromium, nickel and zinc, slightly above the adopted guidelines. These concentrations are not significant, given that no historical or ongoing source for these metals was identified.

A Hazardous Materials Audit was completed to assess the buildings on Parcel 15. Asbestos cement sheeting was identified within buildings at the Speedway facility. ACM was observed to be in poor condition and represents a potential health risk.

Parcel 15 will be suitable for the current landuse subject to the completion of the following interim management requirements:

- An appropriately licensed asbestos removal contractor should be engaged to remove and dispose of the ACM waste in the eastern Speedway access track. Alternatively, the track can be capped with Virgin Excavated Natural Material (VENM) or Excavated Natural Material (ENM) to remove the exposure risk to humans. Validation of the area following removal or capping should be undertaken by an appropriately qualified consultant and documented.
- The recommendations for the handling and management of ACM and polychlorinated biphenyls within the building materials as outlined in the Hazardous Materials Audit should be followed;
- Hydro should continue to monitor and manage impacts to surface water from overland flow that is impacted by leachate from the Capped Waste Stockpile. Any impacts to soils, groundwater or surface water should be remediated as part of the Capped Waste Stockpile remediation program.

Additional investigations are required to assess the suitability of Parcel 15 for the proposed environmental conservation (E2) and general industrial (IN1) landuse, as follows:

• The asbestos identified in the Speedway embankment requires further detailed investigation in accordance with the NEPM to assess the risk to site users from the asbestos fibres identified.

ENVIRON considers that Parcel 15 can be made suitable for the proposed environmental conservation (E2) and general industrial (IN1) land use following remediation. A Remedial Action Plan will be completed to assess the remedial options and outline the requirements for remediation and validation.

Hydro has separately engaged a NSW EPA-accredited Site Auditor to review the investigations completed and the Remedial Action Plan and to complete an interim opinion letter, indicating that the site can be made suitable for the proposed use.

1 Introduction

1.1 Background

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri Pty Limited (Hydro) owned land known as Parcel 15. Parcel 15 is located off Dickson Road, Loxford, New South Wales (2326). Parcel 15 location is shown in **Figure 1**.

The work has been performed at the request of Hydro Aluminium Kurri Kurri Pty Limited (the "Client").

Hydro is currently evaluating options for the redevelopment and possible divestment of land parcels following the closure of the smelter in May 2014. A Rezoning Masterplan has been developed that identifies Parcel 15 to comprise land suitable for general industrial (IN1) and environmental conservation (E2) landuse.

A Phase 1 Environmental Site Assessment has previously been prepared for all Hydro owned lands and evaluated the potential for contamination. The Phase 1 assessment identified that contamination of Parcel 15 may have occurred from dust deposition due to the proximity of the Hydro smelter and activities associated with a motor cross track.

It is noted that at the time of the fieldwork, this land parcel was named Employment Land Subarea 2 and as such the soil samples reference this name. The parcel was renamed Parcel 15 during the rezoning process.

The location of Parcel 15 in the context of the Rezoning Masterplan is shown in Figure 2.

1.2 Objectives and Scope of Work

The objectives of the assessment were to assess the potential for contamination at Parcel 15 based on historical and current land use and to assess the suitability of Parcel 15 for the purpose of general industrial (IN1) and environmental conservation (E2) land use.

The scope of work performed to meet the objectives comprised:

- A review of available information relating to land use to assess the potential for soil, groundwater or surface water contamination arising from historic and current activities;
- A review of published geological, hydrogeological and hydrological data to establish the environmental setting and sensitivity;
- Field work comprising:
 - Collection of surface soil samples to provide a coarse grid assessment of potential dust deposition from the smelter operations;
 - Collection of two surface water samples from ponds on the eastern margin of Parcel 15 (adjacent to Swamp Creek);
 - A site walkover to evaluate other potential locations of buried waste or illegal dumping.

- Excavations of test pits on Parcel 15, where the site walkover indicated the presence of fill material, specifically the spectator mounds around the motorcycle race track on Dickson Road and the road base used in the new access track to the east of the race track.
- Data interpretation including comparison against relevant guidelines and a discussion of the findings in terms of human health and environment risk under the current and future land use scenarios.
- Review of options available for remediation or management to render Parcel 15 suitable for the current and proposed land use.

Site Description 2

Site Location 2.1

Parcel 15 is owned by Hydro Aluminium Kurri Kurri Pty Limited and is located approximately 35km north west of the city of Newcastle and 150km north of Sydney, in New South Wales, Australia. The address of Parcel 15 is Dickson Road, Loxford, New South Wales, Australia. The location of Parcel 15 is shown in Figure 1.

Parcel 15 is located within the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter, immediately east of the smelter, located on the northern side of Dickson Road. The Buffer Zone is an area of land surrounding the smelter that provides a buffer between the smelter and surrounding communities.

Part of Parcel 15 has been developed by the Junior Motorcycle Club and the Kurri Kurri Speedway for motorcycle and car racing. These facilities include earth racing tracks and ancillary facilities.

The remainder of the parcel is predominantly covered in grasses, scattered small trees and shrubs with the eastern-most area (Lot 419 in the south and northern area of Lot 2, adjacent to Swamp Creek, being densely vegetated. A north-south linear pond system is located immediately adjacent to Swamp Creek (within Lots 419 and 2).

Parcel 15 is located within the Cessnock Local Government Area. The western part is zoned IN1 - General Industrial. The eastern part comprising a strip adjacent to Swamp Creek is zoned RU2 – Rural Landscape, under the Cessnock Local Environment Plan.

Parcel 15 is approximately 35 hectares (ha) and comprises the lot numbers and development plans listed in Table 1:

Subarea	Lot/ DP	Area (ha)	Total Area (ha)
Parcel 15	Lot 2 DP233125	20.6	34.7
	Lot 415 DP755231	2.7	
	Lot 416 DP755231	2.7	
	Lot 417 DP755231	2.6	
	Lot 418 DP755231	2.6	
	Lot 419 DP755231	3.5	

Table 4.1 - 4

Current land uses surrounding Parcel 15 are as follows:

- North: Farmland;
- South: Dickson Road then rural residential land; •
- East: Farmland; •
- West: The smelter then bushland.

Parcel 15 is located immediately to the east of the smelter site boundary.

2.2 Site Setting

2.2.1 Topography

Parcel 15 is located in a low lying swampy area of the Buffer Zone at approximately 14 mAHD. The main entrance off Dickson Road to Parcel 15 extends along its southern boundary and is the highest point on Parcel 15. The natural topography is generally flat, although the race track facilities comprise man-made landforms at a higher elevation to the natural topography.

2.2.2 Regional Geology

According to the review of the regional geology described on the Sydney Basin Geological Sheet, Parcel 15 is underlain by siltstone, marl and minor sandstone from the Permian aged Rutherford Formation (Dalwood Group) in the Sydney Basin.

Undifferentiated Quaternary alluvium occurs on the surface of Parcel 15 associated with surface water bodies. Quaternary sediments which are associated with Swamp Creek (approximately 100m east of Parcel 15) and the Hunter River consist of gravel, sand, silt and clay.

2.2.3 Site Hydrology

Surface water from Parcel 15 discharges primarily via run off to man-made and natural drainage lines which discharge surface water to the northern and eastern site boundaries.

Surface water in the eastern portion of Parcel 15 is directed via drainage lines, east, towards Swamp Creek, which discharges into Wentworth Swamp. Wentworth Swamp in turn discharges to the Hunter River approximately 7km northeast of Parcel 15 near Maitland.

The Wentworth Swamp system is within the Fishery Creek Catchment, where declining stream water quality and a reduction in diversity of native plants and animals has occurred due to population growth and development pressures in the last ten years (Hunter-Central Rivers Catchment Management Authority).

2.2.4 Regional Hydrogeology

Regional groundwater is expected to follow topography and flow northeast towards the surface water bodies that discharge to the Hunter River. Locally, groundwater beneath Parcel 15 is expected to flow north east to Swamp Creek located approximately 100m east of the site.

According to the NSW Office of Environment and Heritage (Natural Resource Atlas), there are 21 licensed groundwater abstractions (bores) located within 2km of Parcel 15. The majority of the groundwater bores are located within the aluminium smelter and buffer zone.

Information for 11 bores located in a 1km radius from Parcel 15 has been included in **Appendix A**. The bores are used for monitoring purposes. No further information, such as depth to water or logging information was provided.

The Hunter River Alluvium Groundwater Management Unit (GMU) is an important groundwater resource to the region. Groundwater extraction for irrigation, urban supply, drought supply, stock, domestic and commercial/ industrial use occurs, with volumes in excess of 10,000ML per annum extracted from the Hunter River Alluvium GMU. Aquifer storage and recovery is also an important use of this GMU. It is noted that the Hunter River GMU is not the primary drinking water supply in the region, although the protection of drinking water is a water quality objective for the Hunter River (NSW Water Quality and River Flow Objectives)(www.environment.nsw.gov.au/ieo/Hunter/index.htm).

2.3 Site Sensitivity

The sensitivity of Parcel 15 with respect to surface water and groundwater is considered to be moderate based on the following:

- Surface water and groundwater discharge into Swamp Creek, on the Parcel's eastern margin, which discharges to the Hunter River via Wentworth Swamp within the Fishery Creek Catchment, approximately 7km northeast of Parcel 15 near Maitland.
- Declining stream water quality and a reduction in diversity of native plants and animals has occurred within the Fishery Creek Catchment and water quality down gradient of Parcel 15 has been impacted by historical coal mining;
- The Hunter River GMU is used for irrigation, urban supply, drought supply, stock, domestic and commercial/ industrial use but it is not the main drinking water supply in the region.

3 Site History

Site history investigations included in the Phase 1 ESA for the Hydro Aluminium Kurri Kurri Smelter, dated 26 August 2013. Additional information was also sought from Mr Kerry McNaughton, Hydro's Buffer Zone Supervisor. Available information is summarised in the following.

- Earliest records (aerial photograph in 1951) showed Parcel 15 comprised cleared farm land with one dwelling in the south of the parcel near Dickson Road. The dwelling was located on Lot 417 in DP 755231 and was reportedly demolished prior to the construction of the smelter in approximately the late 1960's (pers.corres. K McNaughton);
- Part of Parcel 15 was leased to the Kurri Kurri Junior Motorcycle Club in the late 1970's for construction a motocross track. The track comprised of a soil course with earth jumps and ramps and ancillary facilities including a spectator stand. It is likely that imported and indigenous soils were used to construct the track (pers.corres. K McNaughton). The track was understood to have been reconstructed in 2002 following a major bushfire. Access to the facility was by an unsurfaced access road from Dickson Road;
- In approximately 2009, a third track was constructed to the south of the motocross facility. The land was leased from Hydro by the Kurri Kurri Speedway who constructed a speedway racing track comprising an oval course with earth spectator embankments, access tracks, 'pit lane', ancillary facilities. Kurri Kurri Speedway reported that the track and embankments were constructed from surplus soils arising during Cessnock City Council roadworks at nearby Mitchell Avenue. Kurri Kurri Speedway has been unable to provide any documentation of the material source;
- The construction of the Speedway restricted access to the Motocross facility and an alternate access way was constructed by Kurri Kurri Speedway. This access is situated further to the east of the Speedway, refer to **Figure 4**, and was constructed from soils won from the Clay Borrow Pit, an area within the Hydro buffer zone where good quality clays have been identified;
- Lot 2 DP 233125 was developed as a motor cross track mid to late 1970's (pers.corres K McNaughton). Lot 418 was also constructed as a motorcycle racing track approximately five years ago including spectator embankments constructed from imported fill materials.

The location of the motocross track, speedway and former dwelling are included in Figure 3.

The buildings at the Speedway were the subject of a Hazardous Materials Audit, a copy of which is attached in **Appendix H**. The audit found asbestos containing materials in the demountable building at the Speedway and in demolition waste used in a gravel road in the east of the Speedway property.

Based on the historical site information potential activities that could give rise to contamination at the site were identified to be:

- Smelter dust deposition due to the location of Parcel 15 immediately east of the smelter boundary;
- The location of Parcel 15 and remoteness of surrounding bushland may also give rise to illegal dumping although it is noted that the buffer zone area is fenced and regularly monitored by Hydro personnel.
- The activities of tenants in the construction and operation of the race tracks including hydrocarbons from fuels and oils, waste materials such as tyres and general debris, heavy metals and asbestos containment materials (ACM) in imported fill materials; and
- Demolition waste from the removal of the former residence.

4 **Previous Investigations**

4.1 Surface Water

4.1.1 ENVIRON

Surface water sampling was undertaken in Parcel 15 as part of additional investigations completed at an area of the smelter known as the capped waste stockpile (ENVIRON 2012). Surface water samples were collected from one location (SW3) at a dam adjacent to Swamp Creek within Parcel 15 and analysed for pH, electrical conductivity, fluoride, free cyanide and aluminium, which are contaminants of concern associated with the capped waste stockpile.

Results for pH and electrical conductivity were consistent with a fresh water stream. Aluminium concentrations exceeded the criteria for the protection of 95% of aquatic ecosystems. Free cyanide concentrations did not exceed this criterion. Fluoride concentrations exceeded the criteria for stock watering.

The dam is located down gradient of a leachate plume associated with the capped waste stockpile. The groundwater plume exfiltrates to surface at several topographically low areas between the capped waste stockpile and the dam, and the dam is considered to collect surface water runoff at times of high flow (i.e. during high rainfall events). The close proximity of the dam to Swamp Creek on the eastern boundary of Parcel 15 indicates that the dam provides an inflow point to Swamp Creek. ENVIRON completed an ecological risk assessment (ENVIRON 2013a), which provided a comparison of surface water quality upstream and downstream of this inflow point and concluded that there was no significant change in risk from fluoride concentrations in Swamp Creek as a result of surface water inflow from water associated with the capped waste stockpile groundwater plume.

Aluminium concentrations at the dam exceeded the criterion for the protection of 95% of aquatic ecosystems. The ecological risk assessment (ENVIRON 2013a) concluded that there were no apparent risks from aluminium concentrations within surface water in Swamp Creek.

Surface water sampling locations and results tables are included in **Appendix B**. These results are discussed further in **Section 8.1**.

4.1.1 Hydro Routine Monitoring

Routine surface water monitoring is undertaken in Parcel 15 by Hydro on a monthly basis and for the Annual Environmental Management Review (AEMR). A surface water sample is collected from the pond from Lot 2, in Parcel 15 that ENVIRON sampled as part of the current investigation. Surface water samples are routinely analysed for pH, electrical conductivity and fluoride. Biannually the samples are also analysed for free cyanide.

Results from routine monitoring between July 2013 and December 2013 were evaluated for this report. Results for pH and electrical conductivity were consistent with a fresh water stream. Fluoride concentrations generally exceeded the criteria for stock watering.

Surface water sampling locations and results tables are included in **Appendix B**. These results are discussed further in **Section 8.1**.

5 Sampling and Analytical Quality Plan

5.1 Potential Areas and Contaminants of Concern

Based on Parcel 15 historical information as discussed in **Section 3**, the following areas of concern were identified as follows.

- Former dwelling on Lot 417 that has been demolished.
- The Speedway on Lot 417, which has embankments constructed from imported fill material.
- Import of materials to the site to create race tracks and access roads.
- Smelter dust deposition.
- Illegal dumping and waste dumping from use of the site by the tenants.

Contaminants of concern associated with the range of previous site activities are:

- asbestos;
- fluoride;
- Polycyclic Aromatic Hydrocarbons (PAHs);
- heavy metals;
- petroleum hydrocarbons.

5.2 Data Quality Objectives and Data Quality Indicators

Data quality objectives (DQOs) and Data Quality Indicators (DQIs) were developed by ENVIRON using the US EPA seven-step DQO process. Completing the seven-step process helps to define the purpose of the assessment and the type, quality and quantity of data needed to inform decisions relating to the assessment of site contamination.

The seven-step DQO process and DQIs are included in Appendix G.

5.3 Sampling Design

The sampling design was optimised following the development of DQOs and DQIs. The sampling design is outlined below.

5.3.1 Fluoride

To assess the potential for fluoride in soil from dust deposition from the Hydro Aluminium Kurri Kurri Smelter, surface soil samples were collected at a rate of one sample per 4Ha.

The sample density is lower than that suggested in Table A of NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines. The density is considered adequate for the purposes of this investigation for the following reasons:

- aerial dust deposition is likely to be relatively consistent over the surface of the parcel and therefore sampling on a low density will allow for identification of whether or not dust deposition is an issue; and
- in the event that elevated or variable fluoride concentrations are identified, additional sampling will be completed.

Samples were collected by trowel from surface soils on an approximate grid across open areas of Parcel 15. Sample locations were logged by GPS.

Soil samples were placed into laboratory-supplied paper bags and stored in an ice-filled cooler for transportation to the laboratory. Soil samples were transported to the laboratory under chain of custody conditions. Intra-laboratory duplicate soil samples were collected at a rate of 10%.

Soil samples were analysed for soluble fluoride, as this is the portion of total fluoride that is available for uptake in receptors including biota, flora, fauna and humans. The laboratory was NATA accredited for the analysis.

5.3.2 Asbestos

To assess the potential for asbestos and other illegally dumped wastes to be present at Parcel 15, a site walkover of accessible areas was completed.

The location and type of dumped wastes were detailed on Field Information Sheets and logged by GPS. Where asbestos was confidently identified by the field personnel, no sampling was completed. If not able to be visually identified, a sample of potential asbestos containing material (ACM) was collected for laboratory analysis. ACM fragments were collected into a zip-lock bag using dedicated disposable gloves.

To assess for the potential for asbestos associated with the current and former dwellings at Parcel 15, a 10m by 10m grid was set up in an accessible, cleared area and a walkover screening survey conducted comprising two passes with a 90° directional change between them, as per NEPM (2013). Any ACM fragments identified during the walkover were collected for analysis.

Any ACM fragments encountered were analysed for asbestos identification by a laboratory NATA accredited for the analysis.

5.3.3 Assessment of Fill

The site walkover identified the presence of fill material at Parcel 15 in the spectator embankments of the Speedway and along the recent access track from the eastern end of Dixon Road, north towards the motocross facility.

A sample of fill was collected from the northern end of the spectator embankment (EMP2-S11) and analysed for a range of potential contaminants, including heavy metals, total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphorous pesticides (OPPs) and asbestos.

A second round of fieldwork was undertaken in March 2014, to further assess the presence of contamination within the fill. A backhoe was used to excavate test pits into areas of potential fill identified at Parcel 15 to allow for visual inspection of the fill as well as sample collection.

The number of test pits completed across Parcel 15 is shown on **Figure 4** and comprised:

- Six test pits excavated in the Speedway spectator embankment; and
- Three test pits excavated in the Lot 418 access track.

The test pits were logged by an ENVIRON environmental scientist and soil samples were collected for analysis.

Soil samples were collected into laboratory-supplied acid-rinsed glass jars using dedicated disposable gloves. The soil samples were stored in an ice-filled cooler for transportation to the laboratory. Soil samples were transported to the laboratory under chain of custody conditions. Intra-laboratory duplicate soil samples were collected at a rate of 10%.

Soil samples were analysed for a range of potential contaminants, including heavy metals, total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphorous pesticides (OPPs) and asbestos. The laboratory was NATA accredited for the analysis.

5.3.4 Surface Water

Two surface water samples were collected from ponds located on the north-east corner of Lot 419 and the large pond on the north-eastern margin of Lot 2, to assess for impacts from the race track facilities. Samples were analysed for heavy metals, total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAHs) and cations and anions. The laboratory was NATA accredited for the analyses.

6 Basis for Assessment Criteria

6.1 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following references:

• NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

The variation to the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 2013) was approved on 19 June 2013 by the NSWEPA under the *Contaminated Land Management Act 1997.* NEPM (2013) provide revised health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses. The NEPM 2013 also introduces health-based and ecological screening levels and management limits for petroleum hydrocarbons (HSLs and ESLs). The levels have been derived from recent assessments that more accurately define the exposure mechanisms and risks from sites contaminated with petroleum hydrocarbons.

The guidelines adopted for Parcel 15 from the NEPM are as follows:

- HIL D Health investigation level for commercial/industrial such as shops, offices, factories and industrial sites. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for industrial use.
- HSLs for commercial/industrial use Health screening levels for soil vapour intrusion from petroleum hydrocarbons are guidelines that prevent accumulation of vapours at concentrations that may represent a health risk. The HSLs are derived for various depths and are for the same generic land uses as for the HILs. The guidelines are relevant were soils are beneath building or structures such as confined spaces;
- EIL for commercial/ industrial use ecological investigations levels applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2m of soil.
- ESLs for commercial/ industrial use ecological screening levels developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. These are also generally applicable to the top 2m of soil.
- Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.

The applicable assessment criteria for heavy metals and PAHs in soil are presented in **Table 2**:

Table 2: Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels			
	HIL D	EIL	
Arsenic	3000	160	
Cadmium	900	-	
Chromium (VI)	3600	320 (CR III, 1% clay)	
Copper	240 000	130	
Lead	1500	1800	
Nickel	6000	40	
Zinc	400 000	380	
Mercury (inorganic)	730	-	
Fluoride	Ref Table 5	Ref Table 5	
Cyanide (free)	1500	-	
Carcinogenic PAHs (as BaP TEQ)	40	-	
Total PAHs	4000	-	
DDT+DDE+DDD	3600	-	
Aldrin +dieldrin	45	-	
Chlordane	530	-	
Endosulfan	2000	-	
Endrin	100	-	
Heptachlor	50	-	
Methoxychlor	2500	-	
Chlorpyrifos	2000	-	

1 EILs represent the most conservative value possible as the lowest value for added contaminant limit (ACL) was used and the ambient background concentration (ABC) was not added, with the exception of zinc and copper, where the EIL was calculated by adding the ACL with the estimated ABC using the NEPM (2013) EIL Calculation Spreadsheet .

Table 3: Soil Assessment Criteria for Vapour Intrusion - HSL D (mg/kg) - Sand				
	0 to <1m	1m to <2m	2m to <4m	4m+
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	230	NL	NL	NL
Naphthalene	NL	NL	NL	NL
Benzene	3	3	3	3
F1(4)	260	370	630	NL
F2(5)	NL	NL	NL	NL

The applicable assessment criteria for petroleum hydrocarbons in soil are presented in **Table 3** and **Table 4**:

1 The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

2 (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.

3 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

4 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

Table 4: ESLs and Management Limits for Petroleum Hydrocarbons in Soil				
TRH fraction Soil texture		ESLs (mg/kg dry soil)	Management Limits ¹ (mg/kg dry soil)	
		Commercial and Industrial	Commercial and Industrial	
F1 C6-C10	Fine	215*	800	
F2 >C10-C16	Fine	170*	1000	
F3 >C16-C34	Fine	2500	5000	
F4 >C34-C40	Fine	6600	10 000	
Benzene	Fine	95	-	
Toluene	Fine	135	-	
Ethylbenzene	Fine	185	-	
Xylenes	Fine	95	-	
Benzo(a)pyrene	Fine	0.7	-	

¹ Management limits are applied after consideration of relevant ESLs and HSLs.

 2 Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

³ ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

⁴ To obtain F1, subtract the sum of BTEX from C6-C10 fraction.

The HSLs for asbestos are applicable for assessing human health risk via the exposure pathway of inhalation of airborne asbestos and are presented in **Table 5**. The HSLs are generic to all soil types.

 Table 5. Health screening levels for asbestos contamination in soil Health Screening Level (w/w)

 Form of asbestos
 Residential A1
 Residential B2
 Recreational C3
 Commercial/

Form of aspestos	Residential A	Residential B ²	Recreational C ³	Industrial D4
Bonded ACM	0.01%	0.04%	0.02%	0.05%
FA and AF ¹		0.0	0019/	
(friable asbestos)	0.001%			
All forms of asbestos	No visible asbestos for surface soil			

1. The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

NEPM (2013) does not provide criteria for fluoride in soils in Australia. Therefore, ENVIRON (2013) conducted a preliminary level Human Health Risk Assessment (HRA) specific to fluoride in order to derive a specific preliminary screening level for fluoride for the Hydro Aluminium Kurri Smelter. The screening level is protective of commercial and industrial site users and is provided in **Table 6**:

Table 6: Site Specific Soil Ass	essment Guidelines (mg/kg) for Fluoride
Preliminary screening levels	
Land Use	Preliminary screening level
Commercial/ industrial - soil	F 17000mg/kg

Consistent with the guidance provided in the NEPM, the data was assessed against the above adopted site guidelines by:

- Comparing individual concentrations against the relevant guidelines and if discrete samples are in excess of the relevant guideline then;
- Comparing the 95% upper confidence limit of mean against the relevant guideline also ensuring that:
 - the standard deviation of the results is less than 50% of the relevant investigation or screening level, and
 - no single value exceed 250% of the relevant investigation or screening level.

6.2 Surface Water

The assessment criteria for the assessment of surface water were sourced from the following references:

- NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).
- NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
- ENVIRON (2013) Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford.

6.2.1 Potential Beneficial Uses

Potential beneficial uses of surface water on site and down gradient of Parcel 15 include:

- Discharge into Swamp Creek, which supports aquatic ecosystems, and potentially flows into the Hunter River;
- Extraction of water from Swamp Creek may also be used for stock watering and/ or irrigation.
- Discharge into groundwater, which may be used by local communities for domestic, recreation, monitoring, irrigation and stock watering purposes, as described in **Section 2.2.4**.

It is noted that drinking water has not been included as a potential beneficial use of water from Swamp Creek, for the following reasons:

- Drinking water supply to the local communities is reticulated and originates from Chichester Dam located on the Chichester River;
- The Kurri Waste Water Treatment Works is located immediately up gradient of Parcel 15. The Works has a licensed discharge point into Swamp Creek, which flows into Wentworth Swamp. Extraction of surface water for drinking water downgradient of this discharge point is therefore not undertaken.

6.2.2 Appropriate Criteria for Surface Water

Based on the review of potential beneficial uses of groundwater and surface water, the criteria for protection of aquatic ecosystems, irrigation and stock watering will be used. Additionally, site specific preliminary screening levels for fluoride and aluminium in surface water have been developed for the Hydro Aluminium Kurri Kurri Smelter (ENVIRON 2013). These are protective of human health and are as follows:

• Surface water (recreational use): Fluoride – 1.5mg/L, Aluminium – 9mg/L.

The investigation levels presented in ANZECC and ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality are considered applicable for the protection of aquatic ecosystems of receiving waters. ANZECC (2000) advocates a site-

specific approach to developing guideline trigger values based on such factors as local biological affects data and the current levels of disturbance of the ecosystem. The guidelines present 'low risk trigger values' which are defined as concentrations of key performance parameters below which there is a low risk of adverse biological effects. If these trigger values are exceeded, then further action is required which may include further site-specific investigations to assess potential contamination or management/ remedial action.

Low risk trigger values are presented in Table 3.4.1 of ANZECC (2000) for the protection of 80-99% of species in fresh and marine waters, with trigger values depending on the health of the receiving waters.

Surface water results will be compared against trigger values for the protection of 95% of freshwater species. A 95% protection of fresh water species was selected due to the indication from the Hunter-Central Rivers Catchment Management Authority that declining stream water quality and a reduction in diversity of native plants and animals has occurred in the last ten years. The 99% level of protection was adopted for compounds that are considered to be bioaccumulative and this approach is conservative.

ANZECC (2000) indicates there is currently insufficient data to derive a high reliability trigger value for TRH but propose a low reliability trigger value of $7\mu g/L$. This guideline is considered by industry to be overly conservative and is below the TRH detection limit that most laboratories can achieve. Therefore the limit of reporting (LOR) will be adopted as a screening trigger for TRH.

Trigger values for cadmium, copper, nickel, lead and zinc can be modified for hardness, as the bioavailability of these heavy metals decreases with increasing hardness. Total hardness was calculated for the receiving water using calcium and magnesium concentrations, with results indicating a hardness of average 50mg/L. Trigger values modified for water hardness have been used, as per Table 3.4.3 of ANZECC (2000).

Surface water results will also be compared against trigger values for irrigation and stock watering. Section 4.3.4 of ANZECC (2000) indicates that stock watering trigger values for heavy metals and metalloids are for total concentrations, irrespective of whether the constituent is dissolved, complexed with an organic compound or bound to suspended solids. Fluoride is included in this section.

Investigation levels for livestock drinking water are not available for organic contaminants, such as TRH and PAHs. In the absence of available investigation levels, the limit of reporting (LOR) will be adopted as a screening trigger for TRH and PAHs.

The long term trigger value has been used for irrigation guidelines. Section 9.2.5.11 of ANZECC (2000) indicates that the long term trigger value for fluoride is based on the assumption that the irrigation water could potentially be phytotoxic to sensitive plant species or could contaminate stock drinking water. As stock watering guidelines are for total metal and metalloid concentrations, total fluoride concentrations will be used.

7 Results

7.1 Site Walkover

A site walkover was completed to identify areas of concern, such as illegally dumped wastes and fill at Parcel 15. The findings of the site walkover are described in the following.

An asbestos walk-over grid (Q1) was undertaken in the south-west corner of Lot 417 at the approximate location of the former demolished house, (**Figure 3**). No evidence of the original house was visible.

The Speedway comprises an oval-shaped motorcycle race track surrounded by a grasscovered spectator embankment consisting of soil fill to a height of up to 4m. The western side of the Speedway comprises small demountable buildings associated with site facilities (offices, storage maintenance, competitor organization). Localized oil staining was observed on the ground around the entrance to the pits area (on the mid-western side of the speedway) associated with storage/dispensing of lubricating oils from drums.

The Speedway infrastructure includes a western access road along which is a number of shipping containers used for storage. Inspection of this area identified the presence of various wastes including tyres, empty drums, steel and concrete wastes. More recently placed fill was apparent on the south-west end of the Speedway against the embankment, as a foundation for an amenities block.

The Motocross tracks appear to have been constructed by landscaping the existing cleared area into tracks, pushing up mounds and constructing barriers and fencing. A few small structures and compounds were located around the perimeter of the tracks for storage and amenities. Some small stockpiles of waste materials were identified including old tyres (which were also used as barriers in construction of some of the track area), broken concrete, wood (trees/old pallets) and metal scrap. An additional asbestos walk-over grid (Q2) was undertaken in the south-west corner of Lot 2 in an open area, adjacent to some nearby waste piles that comprised wood and metal (**Figure 3**). No evidence of any housing, or other former structure or demolition materials was observed.

An unpaved road is present on the eastern side of the Speedway, on Lot 418 and provides access to the Speedway. Numerous small fragments of suspected ACM were observed on this roadway. One suspected ACM fragment was collected and submitted for laboratory analysis (EMP2 – ACM03) during the HMA.

A second unpaved road lies immediately to the east of the Speedway access, and provides access from Dickson Road to the Motorcross tracks. This track appeared to be constructed from clayey soils and was consistent with the description provided by Mr Kerry McNaughton that soils were won from the Clay Borrow Pit for the construction.

Areas to the east and west of the Speedway comprise low lying swampland environments associated with Swamp Creek. A series of backwater lagoons discharge overland flow from Parcel 15 in a northerly direction toward Swamp Creek. Land surrounding the Motocross tracks is topographically higher and vegetated. Some clearing has been undertaken for the construction of fire trails and an electricity easement to the north of the Parcel. No fill materials or waste disposal was identified in these areas. Photographs are included in **Appendix C**. Field Information Sheets are included in **Appendix D**.

7.2 Soil Investigations

7.2.1 Fluoride

Nine surface soil samples (EMP2-SF1 to EMP2-SF9) were collected from across Parcel 15 at a rate of one sample per 4 ha to assess the potential for fluoride in soil from dust deposition from the Hydro Aluminium Kurri Kurri Smelter as shown in **Figure 3**.

A generalised lithology of the surface soils encountered at Parcel 15 is as follows:

• Topsoil: Silt and silty sand brown and dark brown, slightly moist.

7.2.1 Fill Investigation

One soil sample (EMP2-S11) was collected from the northern end of the Speedway embankment (**Figure 3**) in the October 2013 investigation and submitted for laboratory analysis.

In March 2014, a total of six test pits (TP1 to TP6), were excavated in the Speedway embankments and a further three pits (TP7 to TP9), were excavated into the eastern access road on Lot 418. A total of eight samples from the test pits were submitted for analysis.

Test pit locations are presented on **Figure 4**. A summary of test pit investigations is presented in **Table 7** and borelogs are contained in **Appendix G**.

Lot	No. of Test Pits	Fill	Depth of Fill	Natural Ground	Depth of Natural Ground
Lot 417	6	Fill in embankment above ground (to a height of approx. 4m). Fill comprises clay, sandy clay, sand and silty sand, with weathered rock fragments. Also included wastes such as glass, broken concrete/pavers, wood, plastic. No ACM was observed in embankment.	Surface to approx. 4m above ground level.	Alluvial Sand/Silty Sand, brown, fine to medium grained, no odour.	Underlying fill embankment
Lot 418	3	Between surface and 0.25m along access road. Fill was a sandy gravel road base underlain by natural silty sands. No wastes were identified in the soil profile and no ACM was observed.	Surficial fill: 0.25 deep	Alluvial Sand/Silty Sand, brown, fine to medium grained, no odour.	Underlying 0.25m fill (road base) layer

7.3 Soil Results

A summary of the soil results is presented in **Table 8**. Laboratory tables are included in **Appendix E** and laboratory reports are included in **Appendix F**.

Analyte	No. of Samples	Maximum Concentration (mg/kg)	No. exceeding Site Criteria	Criteria Exceeded (mg/kg)
Fluoride	9	39	0	-
Arsenic	9	13	0	-
Cadmium	9	<lor< td=""><td>0</td><td>-</td></lor<>	0	-
Chromium	9	19	0	-
Copper	9	97	1	55 (EIL)
Lead	9	109	0	-
Nickel	9	48	0	-
Zinc	9	254	0	-
Mercury	9	0.4	0	-
BaP TEQ	9	7.6	0	-
BaP ESL	9	0.9	0	-
Total PAHs	9	7.6	0	-
Benzene	9	<0.2	0	-
Toluene	9	<0.5	0	-
Ethyl benzene	9	<0.5	0	-
Xylene	9	<0.5	0	-
TRH C6-C10	9	<10	0	-
TRH >C10-C16	9	<50	0	-
TRH >C16-C34	9	120	0	-
TRH >C34-C40	9	240	0	-
OCPs excluding DDE + DDD + DDT	9	<lor< td=""><td>0</td><td>-</td></lor<>	0	-
Sum of DDE + DDD+ DDT	9	<lor< td=""><td>0</td><td>-</td></lor<>	0	-
OPPs	9	<lor< td=""><td>0</td><td>-</td></lor<>	0	-
Asbestos (ID)	9	Chrysoite, and amosite	2(1)	Presence
Asbestos (fines – AF and FA <7mm)	1	0.004%	0	0.001%

 An additional potential ACM sample was also collected from the unpaved access track immediately to the east of the embankments during the HMA and analysed for presence of asbestos (which was confirmed)

The results of surface soil sampling for fluoride demonstrate that surface soils at Parcel 15 have not been impacted by stack particulate fallout from the Hydro Aluminium Smelter. The results also indicate that soil within the embankment and along the eastern Motocross access track has not been impacted by petroleum hydrocarbons or polycyclic aromatic hydrocarbons.

Asbestos was identified in fragments in embankment fill in samples, S11 (October 2013) and TP5, (March 2014), both from the northern end of the Speedway embankment. No asbestos was detected in the other embankment samples. The suspected ACM fragment (EMP2-ACM03), sampled from the surface of the eastern access track as part of the HMA, was found to contain asbestos.

Copper slightly exceeded the EIL guideline criteria for one sample however the average concentration for Parcel 15 was 25mg/kg and below the guideline of 55mg/kg.

No other exceedences were noted in the soil samples.

7.4 Surface Water Results

Two surface water samples were collected from the ponds on the margins of Swamp Creek in Lot 419 and Lot 2.

The samples slightly exceeded guideline criteria for dissolved metals chromium, copper, nickel and zinc.

Concentrations of TRH slightly above detection limits were found in the sample from the Lot 419 pond. The TRH analysis includes all recoverable hydrocarbons and can be artificially positive when a significant amount of organic matter is present, as is the case for these backwater lagoons. The presence of naturally occurring organic compounds is the likely contributor to the marginal detections of TRH and no further evaluation is warranted.

All other analytes were either below detection limits or below the adopted guideline criteria.

A summary table of the analytical results is presented in **Appendix E** and the laboratory report is presented in **Appendix F**.

7.5 Hazardous Materials Audit

A Hazardous Materials Audit was conducted as part of the Phase 2 ESA and is presented in full in **Appendix I**. In summary, the HMA identified:

- The surrounds of the Speedway are poorly maintained. Drums and containers of oils and fuels are stored without bunding, and there is evidence of oil/ fuel leakage into soils.
- Various wastes (such as demolition waste and tyres) are scattered throughout the Speedway facility.
- ACM construction materials are present in Speedway facility buildings and are in poor condition thereby representing a potential health risk.
- The Junior Motorcycle Club facility is generally well maintained. There are stockpiles of old tyres throughout the facility.

7.6 Quality Assurance/ Quality Control

A quality assurance assessment for this report is presented in **Appendix H**. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines. Overall it is considered that the completed investigation works and the data are of suitable quality to meet the project objectives.

8 Site Characterisation

Parcel 15 is located in the eastern portion of the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter. Parcel 15 comprises six lots immediately north of Dickson Road between the smelter to the west and Swamp Creek to the east.

Undeveloped bushland covers approximately 60% of the western and northern parts of Lot 2 and all of Lot 419 (adjacent to Swamp Creek). The two western Lots (415 and 416) are largely flat and covered with grass and sparse scrub vegetation. A low area centred on Lot 416 is characterised by a swampy wetland.

Parcel 15 is located in close proximity to the Smelter however low concentrations of fluoride in soils demonstrates that Parcel 15 has not been impacted by dust deposition.

Parts of Parcel 15 have been leased to the Kurri Kurri Junior Motorcycle Club and the Kurri Kurri Speedway who have constructed racing facilities comprising earth race tracks, access tracks and ancillary infrastructure. The construction of these facilities has included the importation of buildings and sheds which were included in a Hazardous Materials Audit, and the placement of soil and other fill materials. Activities at the site by the tenants has also resulted in the presence of general debris and localised oil staining or surface soils.

ACM fragments were identified to be present within road gravels on the Speedway eastern access track. ACM was also identified at one location in the northern end of the Speedway embankment. Other samples collected from the Speedway embankment were found to contain concentrations of analytes below the adopted criteria.

Concentrations of copper, chromium, nickel and zinc, slightly above the adopted criteria in the Lot 419/Lot 2 ponds are not considered to be significant, and there are no historical or ongoing sources identified for these metals. Monitoring and management of the dam on Lot 2 continues as part of the management of leachate from the Capped Waste Stockpile.

Parcel 15 is considered suitable for commercial or industrial land use with the exception of the surface ACM identified on the eastern Speedway access track and localised within the Speedway embankments. These tracks and embankments have been constructed by the tenant and therefore are considered to remain the responsibility of the tenant. Additionally, waste disposal and housekeeping practices implemented by the tenant have the potential to impact on the suitability of the site for the current and proposed land use.

The Hazardous Materials Audit has identified the presence of ACM in poor condition within the building structures. The location and deterioration of the ACM is considered to represent a potential health risk to occupants of the buildings.

9 Conclusions and Recommendations

ENVIRON completed a Phase 2 Environmental Site Assessment at Parcel 15, located in the inner eastern portion of the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter. Parcel 15 is owned by Hydro Aluminium and currently comprises unused bushland, open flat unoccupied land and a motorcycle race track development.

The objectives of the assessment were to assess the potential for contamination at Parcel 15 based on historical and current land use and to assess the suitability of Parcel 15 for the purpose of general industrial (IN1) and environmental conservation (E2) land use.

The ESA comprised a site walkover, surface soil sampling, surface water sampling, intrusive investigation by backhoe in embankments and filled areas and completion of a hazardous materials audit. The Phase 1 identified that contamination of Parcel 15 may have occurred from dust deposition due to the proximity of the Hydro smelter, illegal dumping due to the remoteness of the area and contamination from the development and use of the site as a Motocross and Speedway facility.

To assess for potential contaminants of concern on Parcel 15, ENVIRON completed a site walkover, surface soil sampling, surface water sampling, intrusive investigation by backhoe in embankments and filled areas and completion of a hazardous materials audit.

Surface soil sampling for soluble fluoride identified low and below guideline concentrations in all samples. These results indicate that the site has not been impacted by dust deposition from the smelter.

The site walkover identified the presence of fill materials, including potentially asbestos containing material (ACM) fragments on the eastern Speedway access track and within the Speedway spectator embankment. The Speedway facility was observed to contain piles of waste including tyres and demolition wastes, as well as unbunded drums of fuel or oils. Waste tyre stockpiles were present on the Motocross facility.

Soil sampling of filled soils on the Speedway spectator embankment and the eastern Motocross access track identified acceptable and below guideline concentrations for all analytes tested with the exception of asbestos. Fragments of bonded ACM were identified on the surface of the Speedway eastern access track.

Two samples, collected from the surface water ponds on Lot 419 and Lot 2, identified concentrations of copper, chromium, nickel and zinc, slightly above the adopted guidelines. These concentrations are not significant, given that no historical or ongoing source for these metals was identified.

A Hazardous Materials Audit was completed to assess the buildings on Parcel 15. Asbestos cement sheeting was identified within buildings at the Speedway facility. ACM was observed to be in poor condition and represents a potential health risk.

Parcel 15 will be suitable for the current landuse subject to the completion of the following interim management requirements:

- An appropriately licensed asbestos removal contractor should be engaged to remove and dispose of the ACM waste in the eastern Speedway access track. Alternatively, the track can be capped with Virgin Excavated Natural Material (VENM) or Excavated Natural Material (ENM) to remove the exposure risk to humans. Validation of the area following removal or capping should be undertaken by an appropriately qualified consultant and documented.
- The recommendations for the handling and management of ACM and polychlorinated biphenyls within the building materials as outlined in the Hazardous Materials Audit should be followed;
- Hydro should continue to monitor and manage impacts to surface water from overland flow that is impacted by leachate from the Capped Waste Stockpile. Any impacts to soils, groundwater or surface water should be remediated as part of the Capped Waste Stockpile remediation program.

Additional investigations are required to assess the suitability of Parcel 15 for the proposed environmental conservation (E2) and general industrial (IN1) landuse, as follows:

• The asbestos identified in the Speedway embankment requires further detailed investigation in accordance with the NEPM to assess the risk to site users from the asbestos fibres identified.

ENVIRON considers that Parcel 15 can be made suitable for the proposed environmental conservation (E2) and general industrial (IN1) land use following remediation. A Remedial Action Plan will be completed to assess the remedial options and outline the requirements for remediation and validation.

Hydro has separately engaged a NSW EPA-accredited Site Auditor to review the investigations completed and the Remedial Action Plan and to complete an interim opinion letter, indicating that the site can be made suitable for the proposed use.

10 References

ANZECC & NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites;

ENVIRON (2012) Environmental Site Assessment, Alcan Mound, Kurri Kurri, Aluminium Smelter;

ENVIRON (2013) Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter;

ENVIRON (2013a) Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford;

Hunter Catchment Management Trust (2000) Wallis and Fishery Creeks Total Catchment Management Strategy;

NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure (NEPM);

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (Second Edition);

NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;

NSW DECC (2008) Waste Classification Guidelines.

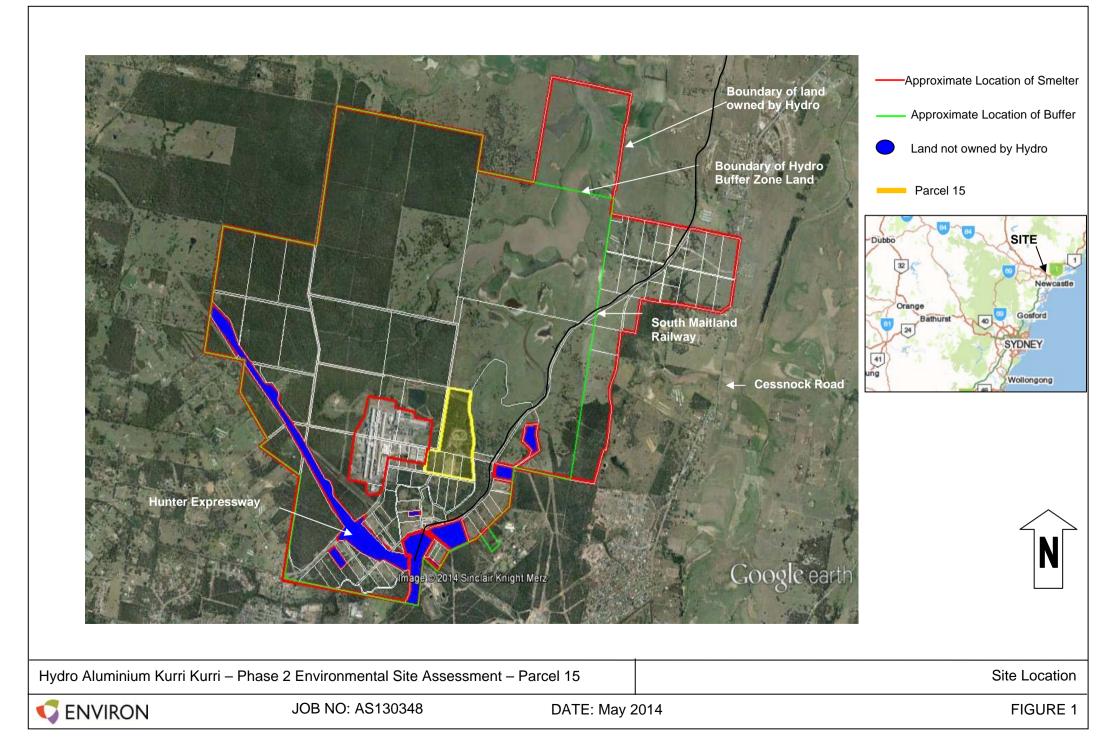
11 Limitations

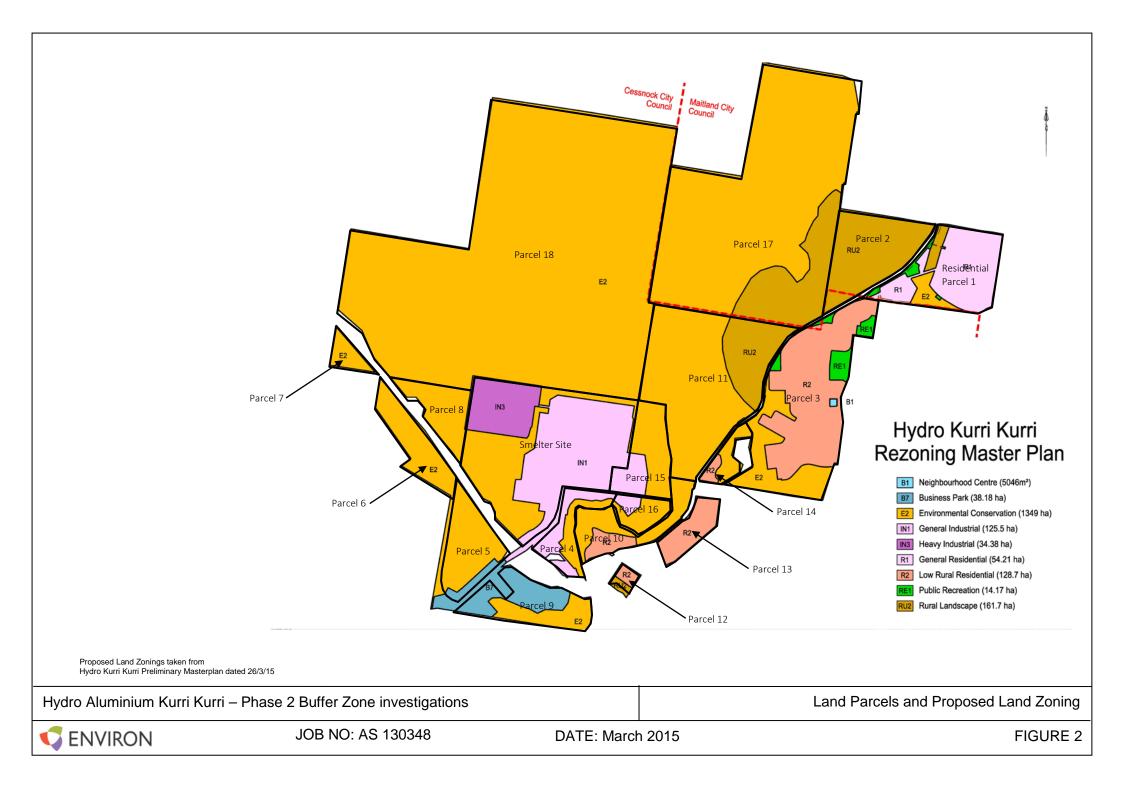
ENVIRON Australia prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Ltd dated 18 November 2013 and in accordance with our understanding and interpretation of current regulatory standards.

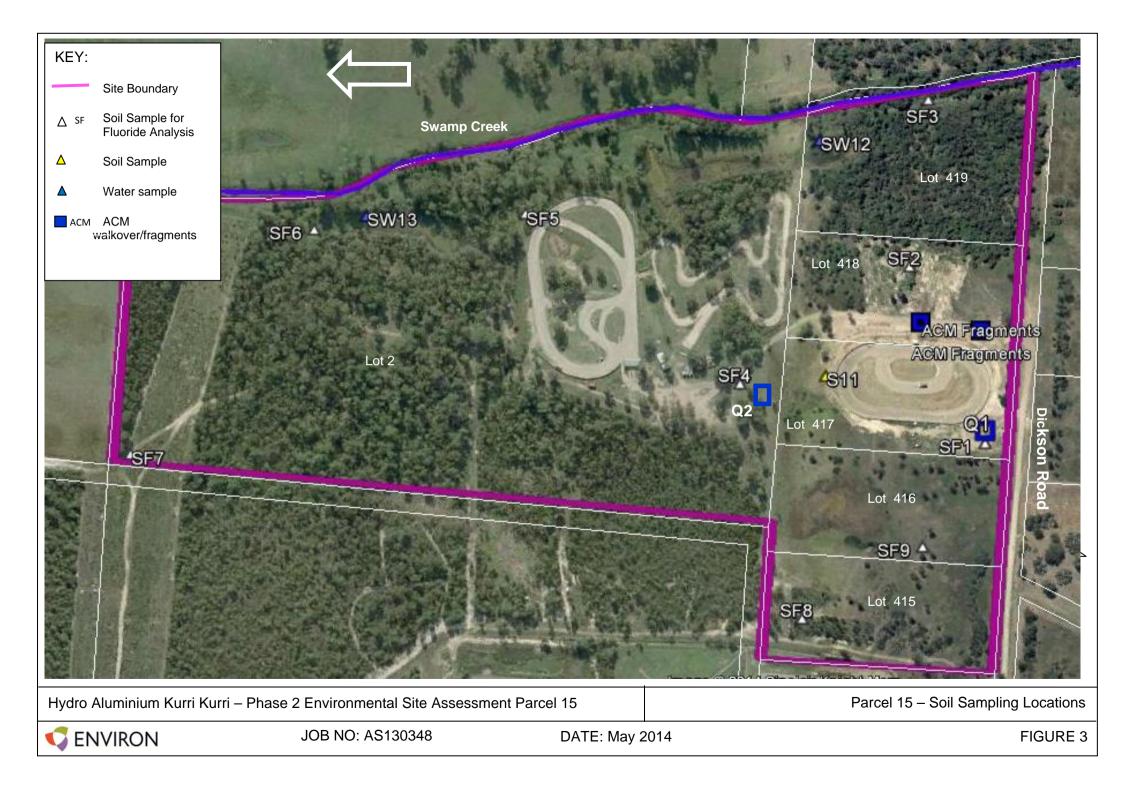
A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of Parcel 15. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous.

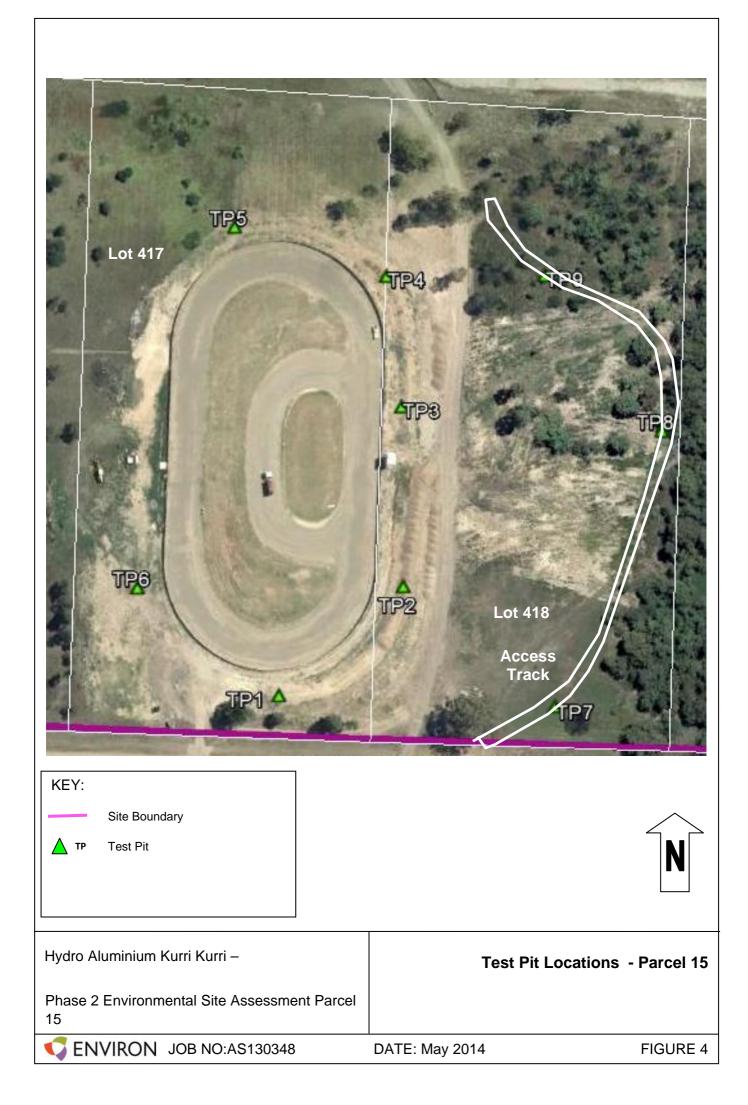
Site conditions may change over time. This report is based on conditions encountered at Parcel 15 at the time of the report and ENVIRON disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent ENVIRON's professional judgment based on information made available during the course of this assignment and are true and correct to the best of ENVIRON's knowledge as at the date of the assessment.

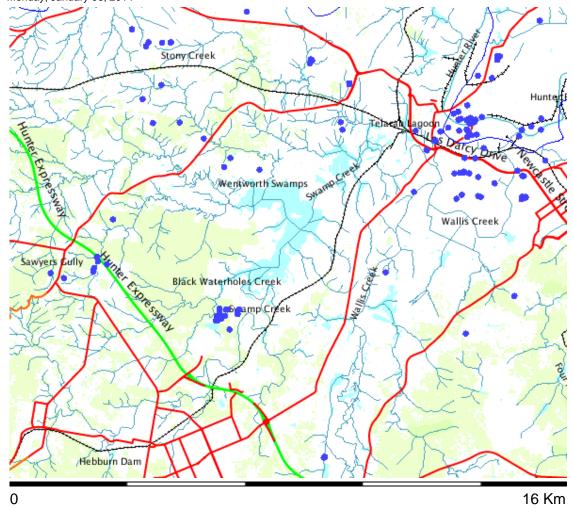

ENVIRON did not independently verify all of the written or oral information provided to ENVIRON during the course of this investigation. While ENVIRON has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to ENVIRON was itself complete and accurate.


This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.


11.1 User Reliance

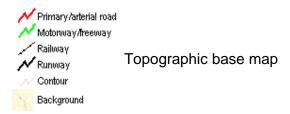

This report has been prepared exclusively for Hydro Aluminium Kurri Kurri Pty Ltd and may not be relied upon by any other person or entity without ENVIRON's express written permission.

Figures



Appendix A

Surrounding Groundwater Bores


Groundwater Bores near Parcel 15

Map created with NSW Natural Resource Atlas - http://www.nratlas.nsw.gov.au Monday, January 06, 2014

Legend

Symbol	Layer	Custodian
•	Cities and large towns renderImage: Cannot build image from features	
Cowra) O	Populated places renderImage: Cannot build image from features	
•	Towns	
•	Groundwater Bores	
PCI	Catchment Management Authority boundaries	
\sim	Major rivers	

Copyright © 2014 New South Wales Government. Map has been compiled from various sources and may contain errors or omissions. No representation is made as to its accuracy or suitability.

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079088

Works Details (top)

GROUNDWATER NUMBER GW079088 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371306.00 EASTING 358054.00 LATITUDE 32 47' 13" 151 29' 3" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079090

Works Details (top)

GROUNDWATER NUMBER GW079090 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371368.00 EASTING 358105.00 32 47' 11" LATITUDE LONGITUDE 151 29' 5" **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079092

Works Details (top)

GROUNDWATER NUMBER GW079092 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371429.00 EASTING 358078.00 LATITUDE 32 47' 9" 151 29' 4" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079093

Works Details (top)

GROUNDWATER NUMBER GW079093 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371460.00 EASTING 358078.00 LATITUDE 32 47' 8" 151 29' 4" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079094

Works Details (top)

GROUNDWATER NUMBER GW079094 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371462.00 EASTING 358234.00 LATITUDE 32 47' 8" 151 29' 10" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079096

Works Details (top)

GROUNDWATER NUMBER GW079096 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371707.00 EASTING 358152.00 LATITUDE 32 47' 0" 151 29' 7" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079096

Works Details (top)

GROUNDWATER NUMBER GW079096 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371707.00 EASTING 358152.00 LATITUDE 32 47' 0" 151 29' 7" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079097

Works Details (top)

GROUNDWATER NUMBER GW079097 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371679.00 EASTING 358335.00 LATITUDE 32 47' 1" 151 29' 14" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079097

Works Details (top)

GROUNDWATER NUMBER GW079097 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371679.00 EASTING 358335.00 LATITUDE 32 47' 1" 151 29' 14" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079099

Works Details (top)

GROUNDWATER NUMBER GW079099 LIC-NUM **AUTHORISED-PURPOSES INTENDED-PURPOSES** WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

20 - HUNTER REGION **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371003.00 358448.00 EASTING LATITUDE 32 47' 23" 151 29' 18" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079101

Works Details (top)

GROUNDWATER NUMBER GW079101 LIC-NUM **AUTHORISED-PURPOSES INTENDED-PURPOSES** WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371680.00 EASTING 358387.00 LATITUDE 32 47' 1" 151 29' 16" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079102

Works Details (top)

GROUNDWATER NUMBER GW079102 LIC-NUM **AUTHORISED-PURPOSES INTENDED-PURPOSES** WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371685.00 EASTING 358725.00 LATITUDE 32 47' 1" 151 29' 29" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079103

Works Details (top)

GROUNDWATER NUMBER GW079103 LIC-NUM **AUTHORISED-PURPOSES INTENDED-PURPOSES** WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371530.00 EASTING 358675.00 LATITUDE 32 47' 6" LONGITUDE 151 29' 27" **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

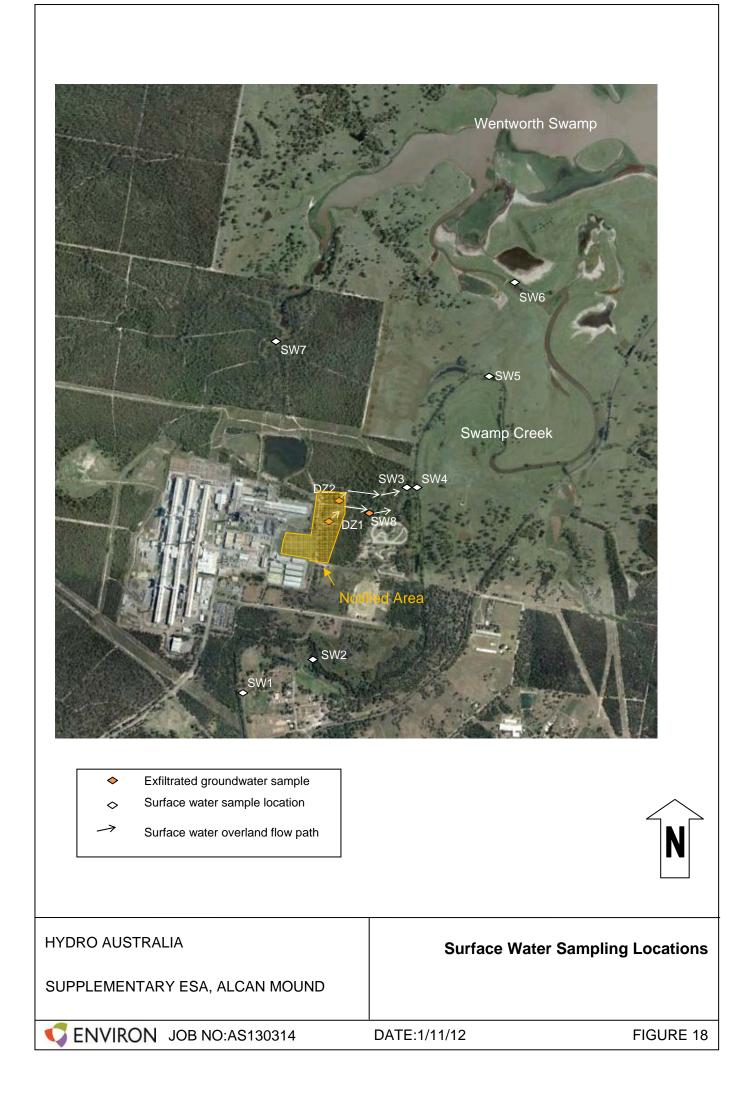
Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)


no details

Drillers Log (top)

no details

Appendix B

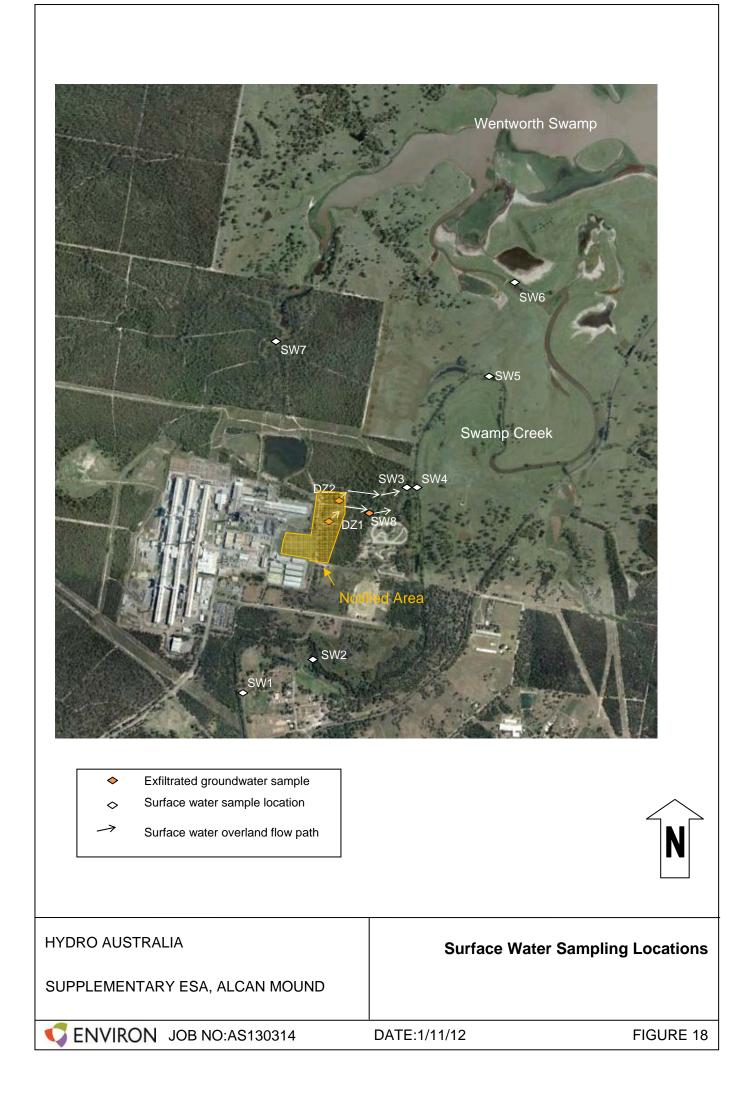
Data From Previous Investigations

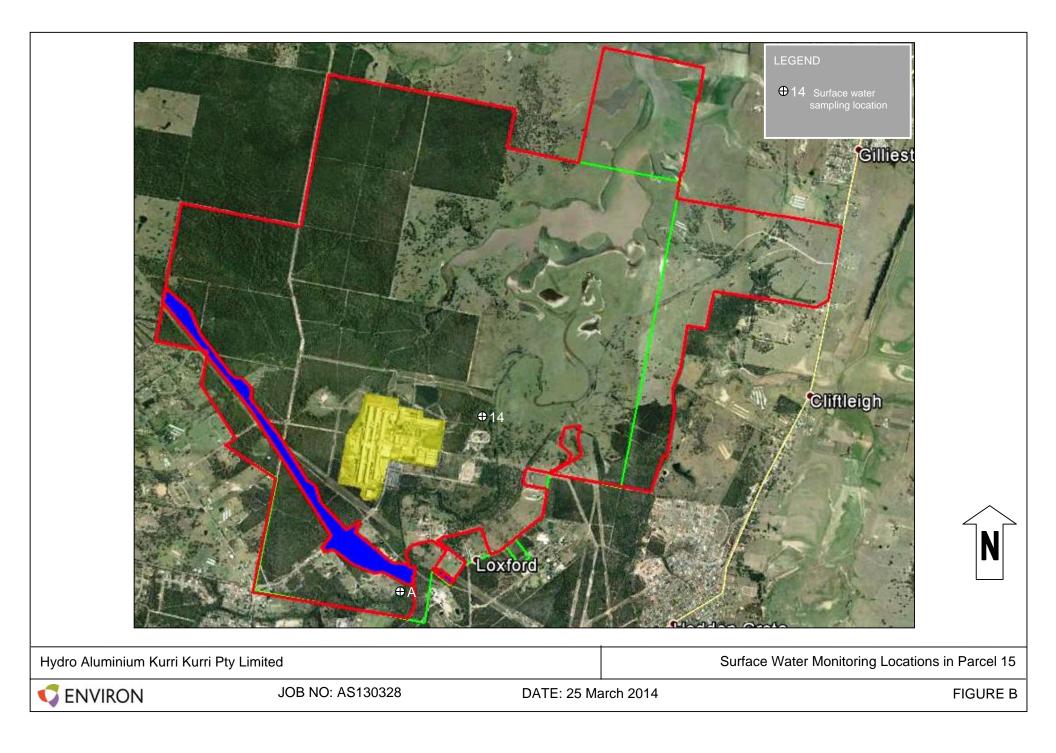
TABLE LR3 Surface Water Analytical Results

Sample Identification	DOL	Guideline			SW3	SW3
Date	PQL	95% Fresh ^A	Irrigation	Stock	9/8/12	28/9/12
Depth to Water (mAHD)						Surface
Sample Appearance						Clear
Sample collected by						SC
Analytes						
рН		6.5-8			7.9	7.3
Electrical Conductivity			4500-7700		500	620
Soluble Fluoride	0.1	5	1	2	18	21
Total Cyanide	0.004				0.026	0.22
Free Cyanide	0.004		0.007		< 0.004	< 0.004
Total Aluminium pH>6.5	0.01	0.055	5	5	2	1.7
Calcium	0.5				9.5	13
Potassium	0.5				3.7	4.3
Sodium	0.5				99	120
Magnesium	0.5				5.1	6.5
Hydroxide Alkalinity	5				<5	<5
Bicarbonate Alkalinity	5				81	64
Cabonate Alkalinity	5				<5	<5
Total Alkalinity	5				81	64
Sulphate	1				42	63
Chloride	1				63	94
Ionic Balance	%				11	11

All results in mg/L

PQL = Practical Quantitation Limit.


^A ANZECC 2000 95% Protection Level for Receiving Water Type


Guidelines in *italics* are low level reliability guidelines

* 5mg/L for Fluoride is based on the value used by another Aluminium Smelter

NHMRC guidelines for total cyanide are based on cyanogen chloride (as cyanide).

Results shaded grey are in excess of the primary acceptance criteria: ANZECC 95%, NHMRC

	Table 8.1: Surface V	Vater Q	uality a	round tl	he Hyd	ro Alumi	inium l	Kurri Ku	ırri Sme	lter for	2013		
MONTH		А	14	В	D	Е	31	1	2	44	3	9	62
January	pH Conductivity (uS/cm) Fluoride (mg/L)	7.4 780 0.8	7.4 1000 30.0	7.3 900 0.8	7.3 910 0.9	7.8 1000 1.2	dry dry dry	6.8 3800 5.8	5.1 5200 5.1	dry dry dry	dry dry dry	dry dry dry	7.7 970 1.2
February	pH Conductivity (uS/cm) Fluoride (mg/L)	7.0 700 0.3		6.8 720 0.5	6.8 740 0.5	6.7 620 0.5						5.8 970 3.5	5.9 1100 0.5
March	pH Conductivity (uS/cm) Fluoride (mg/L) Free Cyanide (mg/L)	6.7 570 0.2		6.7 410 0.6	6.7 270 0.4	6.5 260 0.4 <0.002						6.7 230 0.6	6.5 250 0.4 <0.002
April	pH Conductivity (uS/cm) Fluoride (mg/L)	7.5 970 0.6		7.2 1100 0.6	7.2 1100 0.6	8.2 1200 0.7	6.9 750 0.4	6.7 1000 2.7	6.9 1100 2.8	6.9 550 0.6	6.2 340 0.5	6.8 740 2.0	7.6 660 0.9
May	pH Conductivity (uS/cm) Fluoride (mg/L)	7.5 880 0.5		7.2 1000 0.5	7.1 1000 1.0	7.2 1000 0.7						6.2 930 2.7	7.1 130 0.2
June	pH Conductivity (uS/cm) Fluoride (mg/L) Free Cyanide (mg/L)	7.7 880 0.5		7.4 880 0.5	7.3 970 1.0	7.2 970 0.8 <0.002						4.6 1200 2.9	5.4 1700 0.9 <0.002

٦	Table 8.1 (cont): Surface	Water	Quality	/ aroun	d the H	ydro Alı	uminiu	m Kurri	Kurri S	melter	for 201	3	
MONTH		А	14	В	D	Е	31	1	2	44	3	9	62
July	pH Conductivity (uS/cm) Fluoride (mg/L)	7.4 1300 0.3		7.2 1100 1.2	7.2 1200 0.5	7.1 1200 0.9	6.1 1100 0.2	6.5 980 1.9	6.6 1000 2.6	6.4 1700 0.3	6.2 110 0.3	5.3 1300 5.3	4.4 1000 4.4
August	pH Conductivity (uS/cm) Fluoride (mg/L)	7.4 1100 0.5		7.4 1100 0.6	7.3 1100 1.3	7.3 1300 0.7						4.5 1400 2.5	6.5 1400 0.9
September	pH Conductivity (uS/cm) Fluoride (mg/L) Free Cyanide (mg/L)	6.8 930 0.6		6.8 990 1.2	6.8 980 1.6	6.8 1100 0.9 <0.002						4.0 1700 2.0	6.5 1200 1.1 <0.002
October	pH Conductivity (uS/cm) Fluoride (mg/L)	7.2 940 0.6	7.2 510 18.0	7.1 930 1.7	7.2 1000 1.7	7.3 1100 1.4		7.0 2600 3.6	6.6 2800 3.2	6.5 1800 0.5		3.8 2300 2.8	6.8 1600 1.7
November	pH Conductivity (uS/cm) Fluoride (mg/L)												
December	pH Conductivity (uS/cm) Fluoride (mg/L) Free Cyanide (mg/L)					<0.002							<0.002
ANZECC Wa	ter Quality Criteria: Irrigation Livestock	p 4.5 - -			Flu	oride (mg 1.0 2.0	g/L)		Fre	ee Cyan - -	ide (mg - -	ı∕L)	
	Aquatic Ecosystems	6.5 -	- 9.0			-				0.0	052		

Appendix C Site Photographs

Photo 1: Photograph showing Lot 415 looking west towards speedway.

Photo 2: Photograph of Lot 416 looking north towards swampy ground.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:	
Site:	Parcel 15	SC	AS130348	June 2014	
Client:	Hydro Aluminium Kurri Kurri		13 🖓	VIRON	

Photo 3: Photograph showing northern end of speedway embankment (Lot 417).

Photo 4: Photograph of Speedway Lot 417- western side looking north

Title:	Phase 2 ESA	Approved: SC	Project-Nr.:	Date:	
Site:	Site: Parcel 15		AS130348	June 2014	
Client:	Hydro Aluminium Kurri Kurri		13 🖓	VIRON	

Photo 5: Photograph of western side Lot 417, west of speedway showing waste piles.

Photo 6: Photograph of localized oil staining near pits entrance Lot 417 west speedway.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 15	SC	AS130348	June 2014
Client:	Hydro Aluminium Kurri Kurri		13 🖓	VIRON

Photo 7: Photograph of fill profile from TP5 Lot 417 in speedway embankment north .

Photo 8: Photograph of fill profile from TP1 Lot 417 in speedway embankment south.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 15	SC	AS130348	June 2014
Client:	Hydro Aluminium Kurri Kurri		13 🖓	VIRON

Photo 9: Photograph of access track eastern side of speedway (ACM fragments on surface).

Photo 10: Photograph of ACM fragments on surface of access track eastern side of speedway.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 15	SC	AS130348	June 2014
Client:	Hydro Aluminium Kurri Kurri		13 🖓	NVIRON

Photo 11: Photograph of eastern access road on Lot 418, looking north from near Dickson Road entry.

Photo 12: Photograph of roadbase fill profile on access road – eastern Lot 418.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 15	SC	AS130348	June 2014
Client:	Hydro Aluminium Kurri Kurri		13 🖓	VIRON

Photo 13: Photograph of Pond in north-east of Lot 419.

Photo 14: Photograph of motocross track Lot 2 – Looking west

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 15	SC	AS130348	June 2014
Client:	Hydro Aluminium Kurri Kurri		13 🖓	NVIRON

Photo 15: Photograph of Pond in north-east of Lot 2 – Looking south from sample Pont SW13.

Photo 16: Photograph of wood and tyre wastes - Lot 2 (western side access track).

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 15	SC	AS130348	June 2014
Client:	Hydro Aluminium Kurri Kurri		13 🖓	VIRON

Appendix D

Field Investigation Sheets

Project No.: AS13	0348	Date and Time: i	lu/13
Land Parcel: EM	2	Weather: Fine	mild, o'cast.
Lot and DP: Lot 4	15	Environ Personnel:	
Topography	Flat. shift s	lope towards	East.
Surface Geology	Allunial Soul	5	
Fill evident?	Flat . slight 5 Allunial Sand No Fell enide	<u>ل</u> .	
Hummocky ground?		<u> </u>	
Structures on site?	Arcess truck (fire track) alu	ny véster bunder
Location of structures	of Dickson Re	ι.	
Building materials used in structures			
Asbestos debris on site?	~		
Location of asbestos debris?			
Volume of asbestos debris?	_		
of the preparate descention of strand	2 Mar.		
Point of Interest	est	Easting	Northing
			Norming
29-32 Pan Fis	m NW CAr.		
ผู้เป็นสี่สุดเส็นก็กลายน้ำปลี่มัด			
Buch- covered on	Wiside - adjac	nt to plant a	5
			• -

Project No.: ASIZ	30348	Date and Time: $1/11/13$
	IP2_	Date and Time: 1/11/13 Weather: Fine, mild, 0/cast. Environ Personnel: SC.
Lot and DP: Lot	1416	Environ Personnel: SC.
Topography	Flat with d	poressel, swimpy areas in centralys
Surface Geology	Allurial Sant	epressed, swimpy arew in centrafus
Fill evident?	No Fill obs	nerved «
Hummocky ground?		
Structures on site?		
Location of structures		
Building materials used in structures	<u> </u>	
Asbestos debris on site?	-	
Location of asbestos debris?		
Volume of asbestos debris?	/	
(City Portion Contine)	iest	
Point of Interest	Ku da Aw A	Easting Northing
The second to the hereits of the second second second	and a state of the	
Beschollen - Photos 33 - 37 Pan	roun Mid - Ee	ast site S->EN
ູ້ເຊິ່າເຕັດເວັດແມ່ງເປັນຜູ້ແ		
mainly Alu	it area with .	wetland/Swamp in centre & worth.
Sporse to	Aces & low Scr.	at .

Project No.: ASI3	30349	Date and Time: 31/10	/13		
Land Parcel:		Weather: Fine, mild			
Lot and DP: Lot	417	Environ Personnel: SC			
Enclosed					
Topography	Flat - Fill spectator no	runds around racetrack			
Surface Geology	Alluvial Sonds				
Fill evident?	- Fill mounds . / w	nost of site on fill pa	4?		
Hummocky ground?					
Structures on site?	Muinly Portable sheds	associated with Track	•		
Location of structures	See map / HSA.				
Building materials used in structures					
Asbestos debris on site?					
Location of asbestos debris?					
Volume of asbestos debris?					
City & State Process of Inter	rest				
Point of Interest		Easting	Northing		
Q1 (10×10)		151.48750.	32-79266		
and the second	Taken				
9478-956 - 360 an	. From SW emb.				
957-958 - recent 959-912 - 0	Fill on SW enn6 (G	rad-Sndy Sint; - some coa	(fray, plustic, glass of)-	-	
96/2 - 965 - Flam	NECAR ESW	- damped light poins, concet	June motel wuste		
966 - 969 - Dun	myed materials W s	idy	, , , , , , , , , , , , , , , , , , ,		
970 -972 - Du	was storage.				
Dis Machine Provide Street and Street		an W->N. (empty Dr	wrs/water think)-		
Site mainly actude		associated structures.			
	ne (old houseblack) - Not				
ACM Frags on east	access track (Lot 418) on surface to v 25	-30mm. (1010).		
On W-Sich Dumpe	I material - stores	of Down - Lube, Me.	the Alcohol /contration		
Photos 976-977 01 Dru	ms at entrunce to P	it area on wside -	bare ground /spitte/ 5 tr a	040	
-1/0-4/4 - 100K	ing N From SW corn	¥ ·	t		

Project No.: ASI	30348	Date and Time: 31/10/13		
	PZ	Weather: Fine/mild,		
Lot and DP: Lot	- 418	Environ Personnel: SC		
Still States Top				
Topography	Flat - access + cacle.	2 race track Embankments in	West (see 418	
Surface Geology	Allowings.			
Fill evident?	Fill embaakmen	ts.		
Hummocky ground?				
Structures on site?	Democantubles an 16	last side (aggoc. with	race trade.).	
Location of structures				
Building materials used in structures				
Asbestos debris on site?	in access ti	uch (- sample ID 10).		
Location of asbestos debris?				
Volume of asbestos debris?	Small (20-30-e of access track.	m) fragments appenent	ou susfue	
Point of Interest	est	Easting N	Northing	
	ranha Taken			
"Spontageness and the state of	Your SW CAT W-N-	£ .		
	mounds on E. bec			
Field C				
enfartment & a	ccess trade -1 ACM	West Bongler Easter race on curlice).		
- On Caston Doing	- heavily grass	p into mounds (flom d over · alloss pushed to side ·	constr. of east an	
	ives port has been	publica 10 sear		

Project No.: ASID	0348	Date and Time: $31/10/12$					
Land Parcel: Em		Weather: Fire mild.					
	- 419	Environ Personnel: 56					
Topography	Slope town	nds east > Swamp Ch					
Surface Geology	Allwich)					
Fill evident?	no						
Hummocky ground?	inc						
Structures on site?	No						
Location of structures	NO						
Building materials used in structures	no						
Asbestos debris on site?	No						
Location of asbestos debris?	NÓ						
Volume of asbestos debris?	ng						
Control in Control in Co	Ċ						
Point of Interest		Easting Northing					
9+93-596	- Pounds in	VE car of lot					
	Personal Andrews						
- Completed	z Bush Covered Boundary is Suio rack up eastern	1 underedoped.					
- Eastern - Access +	reak up eastern	side					
		· · ·					
<u>_</u>							

Project No .: AG13	0348	Date and Time: 31/1	0/12		
Land Parcel: EMP		Weather: Fire, mild.			
Lot and DP: Lot	2	Environ Personnel: SC			
Signification					
Topography	Generally Stepining	W->E (twends			
Surface Geology	Allurials - in rid	W-JE (touches ge on NW - Residual -	2		
Fill evident?	-				
Hummocky ground?	4				
Structures on site?	Ruce truch :				
Location of structures	R.				
Building materials used in structures					
Asbestos debris on site?					
Location of asbestos debris?					
Volume of asbestos debris?					
Point of Interest Soil mound - (N 22.10×10 - N	orth of trade) - natural. JU ACM	Easting	Northing 32 · 7878/		
		131- 48852	32.79493		
997-001 Pan fr	on south gate E-NA	Z	2 - mid N. Border Hring		
207-003 - Swhu Nh - 008 - Dra (ee debris - sus avea (n From SW - S-E-N	rear anell B6> 2	3 " " " .c 1-26 E-S Am NW Corr,		
19-013 - Par	From start mx trade	- SE-E-NW 2	? - Pallety/tyres on Mid		
		1 () 1	(1		
4-15 - From East	end of Mx track	locking W.	-8 - Compound at Trode		
6-17 - Timber/1	oncrete assiste + 50i) nou	A N. of racetoch 1	29 - Compound at Trode		
16-15 - Hon Egg 16-17 - Timber/1 18-21 - From N	end of East Pard - Par	A N. of racetoch 1	-8 - Compound at Trode		
6-15 - Hom Egy 6-17 - Timber/1 19-21 - From N	end of Eastland - pan	S-SE-W.			
16-15 - Hom East 16-17 - Timber/1 18-21 - From N 119 Tour forther Million 75% Bush-covered Swamp Ch on	end of Eastland - Pan end of Eastland - Pan developed race tracks at E boundary.	S-SE-W.	semit in north,		
16-15 - Hon Ed 16-17 - Timber/1 19-21 - From N 19-21 - From N 19-21 - From N 19-21 - Subar Char Swamp Char MX trade form	end of East Pord - Par end of East Pord - Par developed race tracks at E boundary. Id by Duckness 10 5	S-SE-W.	semit in north,		
16-15 - Hon Ed 16-17 - Timber/1 19-21 - From N 19-21 - From N 19-21 - From N 19-21 - Subar Char Swamp Char MX trade form	end of Eastland - Pan end of Eastland - Pan developed race tracks at E boundary.	S-SE-W.	semit in north,		
16-15 - Hon Ed 16-17 - Timber/1 19-21 - From N 19-21 - From N 19-21 - From N 19-21 - Subar Char Swamp Char MX trade form	end of East Pord - Par end of East Pord - Par developed race tracks at E boundary. Id by Duckness 10 5	S-SE-W.	semit in north,		

....

Appendix E

Results Tables

TABLE A: Soil Analytical Results - Grid Sampling

Sample Depth: 0.01m - 0.02m Sampling Date: 23/10/13 Laboratory PQL: 0.5 mg/kg Site Specific HIL - Fluoride: 17000mg/kg

ence opeenie i inc		~~
	Soluble	
Sample	Fluoride	
Identification	mg/kg (1:5	
	soil:water)	
EMP2-SF1	29	
EMP2-SF2	25	
EMP2-SF3	4	
EMP2-SF4	16	
EMP2-SF5	6	
EMP2-SF6	4	
EMP2-SF7	3	
EMP2-SF8	39	
EMP2-SF9	20	

cell shaded grey where investigation criteria exceeded

				Guideline			EMP2-S11	P15 TP1 0.2-0.5	P15 TP2 0.3-0.6	P15 TP3 0.3-0.5	P15 TP4 0.3-0.5	P15 TP5 0.3-0.5	P15 TP6 0.3-0.5	P15 TP7 0.1-0.2	P15 TP9 0.1-0
mple Identification mple Depth (m)	1				ESL										
e	PQL	HIL 'D' ^	HSL 'D' Silt 0m to 1m	EIL Urban Commercial/Indus trial (lowest ACL) ⁰	Industrial (Coarse	Mgt Limits Industrial	31/10/2013	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014	18/03/2014
				mar (romear ride)	Soil)										
								FILL		FILL	FILL	FILL	FILL	FILL	FILL
mple Profile mple collected by							FILL SC	FILL	FILL SC	FILL	FILL	FILL	FILL	FILL	FILL
imple concerca by							00	00	00	00	00	00	00	00	00
sbestos															
sbestos Detected sbestos Type	1332-21-4						Yes	No	No	No	No	Yes Ch + Am	No	No	No
ample weight (dry)	1332-21-4						964	41.6	40	46.7	43	42.1	47	49.2	45.3
sbestos Quantification				1											
eight Used for % Calculation kg							0.964				•				
sbestos Containing Material - g brous Asbestos - g							<0.1	-	-					-	
abestos Containing Material (as 15%														-	
abestos in ACM >7mm) - % abestos Fines and Fibrous Asbestos		0.05%					<0.01	-	-	-	-		-	-	-
sbestos Fines and Fibrous Asbestos		0.001%					<0.001	-	-	-	-	-	-	-	-
:7mm) - % race Asbestos Detected - %							No								
eavy Metals							INU	-		-		-		-	
senic	5	3000		160			9	7	8	13	7	11	7	6	<5
admium	1	900					<1	<1	<1	<1	<1	<1	<1	<1	<1
nromium	1	3600		530		<u> </u>	9	19	18	14	5	17	11	8	6 *5
ad	5	240,000 1500		1800			11 91	<b< td=""><td>1/ 72</td><td>109</td><td>10</td><td>12</td><td>21 94</td><td>8</td><td><5</td></b<>	1/ 72	109	10	12	21 94	8	<5
ckel	2	6000		160			2	<2	16	10	7	9	16	48	10
nc	2	400,000		390			128	20	154	217	74	52	254	34	24
ercury plycyclic Aromatic Hydrocarbons (PA	0.1	730		I	I	I	0.4	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
aphthalene	0.1	1	1	370	1		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
enaphthylene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cenaphthene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
uorene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
henanthrene	0.1						<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5
nthracene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
uoranthene	0.1						1	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	<0.5	<0.5
/rene	0.1						0.9	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	<0.5	<0.5
enz(a)anthracene	0.1														
hrysene	0.1						<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	<0.5	<0.5
enzo(b)&(k)fluoranthene	0.2						0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5
enzo(a) pyrene	0.05				1.4		<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5	<0.5	<0.5
ideno(1,2,3-c,d)pyrene ibenz(a,h)anthracene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ibenz(a,h)anthracene enzo(g,h,i)perylene	0.1						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
enzo(g),n,nperytene enzo(a)pyrene TEQ	0.5	40					<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5
otal +ve		4000					2.4	<0.5	<0.5	7.6	<0.5	<0.5	<0.5	<0.5	<0.5
otal Recoverable Hydrocarbons (TRH)							2.7	-0.0	50.0	1.0	-0.0	-0.0	-0.5	-0.0	-0.0
RH C6 - C10	25	1.5,	250	1	215	700	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C6 - C10 less BTEX	25		NL		-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
RH >C10-C16	50		NL		170	1000	<50	<50	<50	<50	<50	<50	<50	<50	<50
RH >C16-C34	100		NL		1700	3500	<100	<100	<100	<100	<100	<100	120	<100	<100
RH >C34-C40	100		NL		3300	10000	<100	<100	<100	<100	<100	<100	<100	<100	<100
TEX					,										
enzene	0.2		4		75		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
oluene	0.5		NL		135		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
hylbenzene	1		NL		165		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
+p-xylene	2	-	NL		180	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene	1		NL		180		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
C/ OP Pestcides				1											
um of Aldrin + Dieldrin	0.05	45				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
um of DDD + DDT + DDE	0.05	3600				1.13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
emainder of OCPs PPs	0.05			1		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
PPs CBs	0.05	 		1		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
USS (Soils)	0.1	1		I	I	-	<0.1								
1 (Solis) I Value	0.1			1				5.2	-		-	-		8	-
changeable Cations (as meq/100g)	U.1	I	l	1	I	L		0.2	· · ·			· · · · · · · · · · · · · · · · · · ·		0	
changeable Cations (as meg/100g) changeable Calcium	0.1	-		1	-			4.8						2	
changeable Calcium	0.1							4.8		-			-	2.4	-
changeable Potassium	0.1			1		<u> </u>		0.3					-	<0.1	
changeable Polassium	0.1			1		<u> </u>	-	0.1		-		-	-	0.7	-
ation Exchange Capacity	0.1	1		1				7.7						5.1	
rganic Matter	0.1		·	·	·	-		1.1						0.1	
stal Organic Carbon (%)	0.5	1		1				<0.5						<0.5	
I results are in marka unless otherwise indicated.	0.0	ı		1				50.0				1		1 59.9	r
IL D - Commercial/ Industrial landuse															

TABLE C Surface Water Analytical Results

Sample Identificatior Date	PQL	0EP/ Erooh A	Guideline Irrigation	Stock	EMP2-SW12 31/10/13	EMP2-SW13 31/10/13	EMP2-QA2 31/10/13
	1	95% Fresh ^A	Ingation	SIUCK			
ample Appearance					clear, sl. turbid	clear, sl. turbid	clear, sl. turbic
Sample collected by					SC	SC	SC
Field Parameters				1	7.1	7.7	7.16
pH	0.01				7.1	676	7.16
Electrical Conductivity (µS/cm	0.1				128	118	128
Redox Potential (mV Dissolved Oxygen (mg/L	0.1				2.8	10.2	1.9
Total Recoverable Hydrocarbons (TRH)	0.1	I		I	2.0	10.2	1.3
TRH C6-C9	10				<20	<20	<20
TRH C10-C14	50				<50	<50	<50
TRH C15-C28	100				300	<100	340
TRH C29-C36	100				150	<50	160
TRH C10-C36	250				450	<50	500
Total Recoverable Hydrocarbons (TRH) NE		г – т		1			
RH C6 - C10	10				<20	<20	<20
VTPH C6 - C10 less BTEX (F1)	10				<20	<20	<20
TRH >C10-C16	50				<100	<100	<100
TRH >C16-C34 TRH >C34-C40	100				380 140	<100 <100	420
C10 - C16 Fraction minus Naphthalene (F2	100				<100	<100	<100
BTEX	100				\$100	\$100	<100
Benzene	1	950			<1	<1	<1
Foluene	1			l	<2	<2	<2
Ethylbenzene	1				<2	<2	<2
n+p-xylene	2	200			<2	<2	<2
p-xylene	1	350			<2	<2	<2
Polycyclic Aromatic Hydrocarbons							
Naphthalene	1	16			<1.0	<1.0	<1.0
Acenaphthylene	1				<1.0	<1.0	<1.0
Acenaphthene	1				<1.0	<1.0	<1.0
Fluorene	1	0.0			<1.0	<1.0	<1.0
Phenanthrene	1	0.6			<1.0	<1.0	<1.0
Anthracene	1	0.01				<1.0	
Fluoranthene	1	1			<1.0	<1.0	<1.0
Pyrene Benz(a)anthracene	1				<1.0	<1.0	<1.0
Chrysene	1				<1.0	<1.0	<1.0
Benzo(b)fluoranthene	1				<1.0	<1.0	<1.0
Benzo(k)fluoranthen€	1				<1.0	<1.0	<1.0
Benzo(a)pyrene	0.5	0.1			<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	1				<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	1				<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	1				<1.0	<1.0	<1.0
Sum of polycyclic aromatic hydrocarbon	0.5				<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero	0.5				<0.5	<0.5	<0.5
Dissolved Metals (mg/L)	1	г т			1		
Arsenic	0.001	0.013 0.0084*	0.1	0.2	0.004 0.0003	<0.001	0.003
Cadmium Chromium	0.0001	0.0084	0.01	1	0.002	<0.001	0.002
Copper	0.001	0.00546*	1	0.5	0.002	0.005	0.002
Mercury	0.0001	0.0006	0.002	0.002	<0.0001	< 0.0001	<0.0001
Nickel	0.001	0.0429*	0.2	1	0.014	0.072	0.015
Lead	0.001	0.02584*	2	0.1	0.004	<0.001	0.005
Zinc	0.005	0.0312*	0.2	20	0.071	0.073	0.069
Cations & Anions (mg/L)							
Calcium	1				8	9	8
Magnesium	1				5	5	5
Sodium	1		-		110	104	109
Potassium	1				10	4	10
Hydroxide Alkalinity as CaCO:	1				<1	<1	<1
Carbonate Alkalinity as CaCO:	1				<1	<1	<1
Bicarbonate Alkalinity as CaCO: Fotal Alkalinity as CaCO:	1				64 64	78 78	67
Sulphate, SO4	1				10	20	10
Chloride, Cl	1				117	102	118
Water Hardness as CaCO3 (Calculation)	-				61	39	61
		ı				~~	
Il values are in µg/L unless otherwise indicated							
PQL = Practical Quantitation Limit.	er Tune						
PQL = Practical Quantitation Limit. ^A ANZECC 2000 95% Protection Level for Receiving Wat		200 (DOM 0040)					
PQL = Practical Quantitation Limit. ^A ANZECC 2000 95% Protection Level for Receiving Wat Preliminary Site Specific Screening Level protective of H	uman Health (E						
NI values are in µg/L unless otherwise indicated [™] OL = Practical Quantitation Limit. ^Å ANZECC 2000 95% Protection Level for Receiving Wat [™] Preliminary Site Specific Screening Level protective of H [™] Hardness Modified Trigger Values for Cd, Cu, Ni, Po, Zr	uman Health (E based on hard	iness of Swamp Creek	(from previous invesite	gations)			
PQL = Practical Quantitation Limit. ^A ANZECC 2000 95% Protection Level for Receiving Wat Preliminary Site Specific Screening Level protective of H	uman Health (E based on hard	iness of Swamp Creek	(from previous invesite	gations)			
PQL = Practical Quantitation Limit. ^A ANZECC 2000 95% Protection Level for Receiving Wat Preliminary Site Specific Screening Level protective of H Hardness Modified Trigger Values for Cd, Cu, Ni, Pb, Zr	uman Health (E based on hard	iness of Swamp Creek	(from previous invesit	gations)			
VQL = Practical Quantitation Limit. ^A AVZECC 2000 95% Protection Level for Receiving Wat Preliminary Site Specific Screening Level protective of H Hardness Modified Trigger Values for C4, Cu, Ni, Pb, Z WZECC ansein guideline based on As (V) for fresh wat WZECC guidelines for chromium are based on Cr (VI)	uman Health (E based on hard r, the lowest of	iness of Swamp Creek	(from previous invesit	gations)			
PQL = Practical Quantitation Limit. AVZECC 2000 95% Protection Level for Receiving Wal Prefirminary Sile Specific Screening Level protective of H Hardness Modified Trigger Values for Cd, Cu, Ni, Pb, Zr NVZECC ansenic guideline based on As (V) for fresh wat NVZEC guidelines for chromium are based on in organio n	uman Health (E based on hard r, the lowest of hercury.	iness of Swamp Creek presented guidelines.	(from previous invesite	gations)			
PQL = Practical Quartitation Limit. ⁴ AVZECC 2000 95% Protection Level for Receiving Wat Performinary Site Specific Screening Level protective of H Handress Modified Trigger Values for CG, Cu, N, Pb, Z, MCECC ansetic guidenties based on A C (V) MCECC dustrice (protective based on A C) (V) MCECC guidenies for intercuty are based on inorganic in textus shaded gray are in access of the primary acceptate dust is and acceptate on the primary acceptate MCECC guidenies for mercuty are based on the primary are based on the primary acceptate MCECC guidenies for mercuty are based on the primary are based on the primary are based	uman Health (E based on hard r, the lowest of hercury.	iness of Swamp Creek presented guidelines.	(from previous invesity	ations)			
PQL = Practical Quantitation Limit. MARECC 2000 5% Protection Level for Receiving Wate Proliminary, Sile Specialic Screening Level protective of H Hardness Modified Trigger Yulaus for CA, Cu, N, Pz, Z, MARECC astrenic guideline based on As (V) for fresh wate MARECC guidelines for mercury are based on norganic MARECC guidelines for mercury are based on norganic Results shaded gray are hances of the primary acceptant D not determined due to insufficient background data	uman Health (E based on hard r, the lowest of hercury.	iness of Swamp Creek presented guidelines.	(from previous invesite	gations)			
PQL = Practical Quartitation Limit. ⁴ AVZECC 2000 95% Protection Level for Receiving Wat Performinary Site Specific Screening Level protective of H Handress Modified Trigger Values for CG, Cu, N, Pb, Z, MCECC ansetic guidenties based on A C (V) MCECC dustrice (protective based on A C) (V) MCECC guidenies for intercuty are based on inorganic in textus shaded gray are in access of the primary acceptate dust is and acceptate on the primary acceptate MCECC guidenies for mercuty are based on the primary are based on the primary acceptate MCECC guidenies for mercuty are based on the primary are based on the primary are based	uman Health (E based on hard r, the lowest of hercury. nce criteria: AN	Iness of Swamp Creek i presented guidelines. ZECC 95%	(from previous invesitį	jations)			

TABLE D: Soil Quality Assurance/			
Sample Identification	SF1 QA1		
Sample Depth (m)	0.0		
Duplicate Type	Intrala	RPD %	
Sample Profile	Fill se		
Sample collected by			
Fluoride			
Soluble Fluoride	29 30		3.3

Note all units in mg/kg

BOLD identifies where RPD results exceed criteria

intralaboratory	interlaboratory	
>50	>60	where both sample results exceed ten x PQL
>75	>85	where both sample results are within 5 to 10 x PQL
>100	>100	where both sample results are within 2 to 5 x PQL
AD>2.5 * PQL		where one or both sample results are <2 x PQL

BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Sample Depth (m) Duplicate Type Sample Profile Sample collected by Field Parameters pH Electrical Conductivity (μ S/cm) Redox Potential (mV) Dissolved Oxygen (mg/L) Total Recoverable Hydrocarbons (TRH) TRH C6-C9 TRH C10-C14 TRH C10-C28 TRH C10-C36 TOtal Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 v7PH C6 - C10 VTPH C6 - C10 v7PH C6 - C10 VTPH C6 - C10 tr TRH >C10-C16 TRH >C10-C34 TRH >C10-C16 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) Benzene Toluene Ethylbenzene thylpenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Actionaphthene Fluoranthene Fluoranthene Fluoranthene Pyrene Benzc(a) anthracene Fluoranthene Ency(a) fluoranthene	7.1 713 128 2.8 <20 <50 300 150 450	- alaboratory Water SC 7.16 7.11 128 1.9 (20 <50 340 160 500 (20 <20 <20 <20 <100 420 160 <100 <100 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	1 0.3 0 38 0 0 0 13 6 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sample Profile Sample collected by Field Parameters pH Electrical Conductivity (µS/cm) Redox Potential (mV) Dissolved Oxygen (mg/L) Total Recoverable Hydrocarbons (TRH) TRH C10-C14 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C29-C36 TRH C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C34 TRH >C10-C16 TRH >C10-C16 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) Benzene Toluene Ethylbenzene m+p-xylene 0-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	7.1 713 128 2.8 <20	Water SC 7.16 711 128 1.9 <20	0.3 0 38 0 0 13 6 11 0 0 0 0 10 13 0 0 0 0 0 0 0 0 0 0 0 0 0
Sample collected by Field Parameters pH Electrical Conductivity (µS/cm) Redox Potential (mV) Dissolved Oxygen (mg/L) Total Recoverable Hydrocarbons (TRH) TRH C10-C14 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C29-C36 TRH C10-C14 TRH C29-C36 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C29-C36 TRH C3-C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BETEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Maphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	713 128 2.8 <20	SC 7.16 711 128 1.9 <20	0.3 0 38 0 0 13 6 11 0 0 0 0 10 13 0 0 0 0 0 0 0 0 0 0 0 0 0
Field Parameters pH Electrical Conductivity (µS/cm) Redox Potential (mV) Dissolved Oxygen (mg/L) Total Recoverable Hydrocarbons (TRH) TRH C6-C9 TRH C10-C14 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BETEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	713 128 2.8 <20	7.16 711 128 1.9 <20 <50 340 160 500 <20 <20 <20 <20 <100 420 160 <100 <100 <100 <1 <2 <2 <2 <2 <2 <2	0.3 0 38 0 0 13 6 11 0 0 0 0 10 13 0 0 0 0 0 0 0 0 0 0 0 0 0
PH Electrical Conductivity (µS/cm) Redox Potential (mV) Dissolved Oxygen (mg/L) Total Recoverable Hydrocarbons (TRH) TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 TRH C6 - C10 less BTEX (F1) TRH >C10-C16 TRH >C10-C34 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BETEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	713 128 2.8 <20	711 128 1.9 <20 <50 340 160 500 	0.3 0 38 0 0 13 6 11 0 0 0 0 10 13 0 0 0 0 0 0 0 0 0 0 0 0 0
Electrical Conductivity (µS/cm) Redox Potential (mV) Dissolved Oxygen (mg/L) Total Recoverable Hydrocarbons (TRH) TRH C6-C9 TRH C10-C14 TRH C29-C36 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) TRH >C10-C16 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) Benzene Toluene Ethylbenzene m+p-xylene 0-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	713 128 2.8 <20	711 128 1.9 <20 <50 340 160 500 	0.3 0 38 0 0 13 6 11 0 0 0 0 10 13 0 0 0 0 0 0 0 0 0 0 0 0 0
Redox Potential (mV) Dissolved Oxygen (mg/L) Total Recoverable Hydrocarbons (TRH) TRH C6-C9 TRH C10-C14 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C29-C36 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C2-C36 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) TRH >C16-C34 TRH >C16-C34 TRH >C16-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BTEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	128 2.8 <20	128 1.9 	0 38 0 0 13 6 11 0 0 0 0 10 13 0 0 0 0 0 0 0 0 0 0 0 0 0
Dissolved Oxygen (mg/L) Total Recoverable Hydrocarbons (TRH) TRH C6-C9 TRH C10-C14 TRH C10-C36 TRH C10-C36 TRH C10-C36 TRH C10-C36 TRH C10-C36 TRH C29-C36 TRH C10-C36 TRH C20-C36 TRH C20-C36 TRH >C10-C34 TRH >C10-C16 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BETEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Maphthalene Acenaphthene Fluorene Phenanthrene Anthracene Polycyclic Anomatic Hydrocarbons Naphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Porrene Phenanthrene Anthracene Fluoranthene Pyrene	2.8 <20 <50 300 150 450 1(2013) <20 <20 <100 380 140 <100 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	1.9 <20 <50 340 160 500 <20 <20 <20 <100 420 160 <100 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	38 0 0 13 6 11 0 0 0 0 10 10 13 0 0 0 0 0 0 0 0
Total Recoverable Hydrocarbons (TRH) TRH C6-C9 TRH C10-C14 TRH C10-C14 TRH C10-C28 TRH C29-C36 TRH C29-C36 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C20-C36 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) TRH >C10-C16 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BETEX Benzene Toluene Ethylbenzene Polycyclic Aromatic Hydrocarbons Maphthalene Acenaphthylene Acenaphthene Fluorene Fluorene Fluorene Phenanthrene Fluoranthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Fluoranthene Pyrene Benz(a)anthracene	<pre><20 <50 300 150 450 450 450 </pre> <pre></pre> <p< td=""><td><pre><20 <50 340 160 500 </pre> <20 <20 <20 <100 420 160 <100 <100 <100 <1 <2 <2 <2</td><td>0 0 13 6 11 0 0 0 0 10 13 0 0 0 0 0 0 0 0</td></p<>	<pre><20 <50 340 160 500 </pre> <20 <20 <20 <100 420 160 <100 <100 <100 <1 <2 <2 <2	0 0 13 6 11 0 0 0 0 10 13 0 0 0 0 0 0 0 0
TRH C6-C9 TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C10-C36 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) TRH >C16-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BTEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<50 300 150 450 (2013) <20 <20 <20 <100 380 140 <100 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<50 340 160 500 <20 <20 <20 <100 420 160 <100 <100 <1 <2 <2 <2 <2 <2	0 13 6 11 0 0 0 10 13 0 0 0 0 0 0 0 0 0
TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) TRH >C10-C16 TRH >C16-C34 TRH >C16-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BTEX Benzene Toluene Ethylbenzene m+p-xylene 0-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<50 300 150 450 (2013) <20 <20 <20 <100 380 140 <100 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<50 340 160 500 <20 <20 <20 <100 420 160 <100 <100 <1 <2 <2 <2 <2 <2	0 13 6 11 0 0 0 10 13 0 0 0 0 0 0 0 0 0
TRH C15-C28 TRH C29-C36 TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) TRH >C10-C16 TRH >C10-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BTEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluorene Pyrene Benz(a)anthracene Chrysene	300 150 450 1(2013) <20 <20 <100 380 140 <100 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	340 160 500 <20 <20 <100 420 160 <100 <1 <2 <2 <2 <2	13 6 11 0 0 0 10 13 0 0 0 0 0 0
TRH C29-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) TRH >C10-C16 TRH >C10-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BETEX Benzene Toluene Ethylbenzene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	150 450 (20) <20 <100 380 140 <100 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	160 500 <20 <20 <100 420 160 <100 <100 <1 <2 <2 <2 <2	6 11 0 0 10 13 0 0 0 0 0
TRH C10-C36 Total Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) TRH >C10-C16 TRH >C10-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BETEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthrene Pyrene Benz(a)anthracene Chrysene	450 1(2013) <20 <20 380 140 <100 <1 <2 <2 <2 <2 <2 <2 <2 <2 <1.0	500 <20 <100 420 160 <100 <100 <1 <2 <2 <2 <2	11 0 0 10 13 0 0 0 0 0 0
Total Recoverable Hydrocarbons (TRH) NEPM TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BTEX Benzene Toluene Ethylbenzene Toluene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Pluorene Phenanthrene Pluorene Phenanthrene Pluorene Phenanthrene Phenanthrene Fluoranthene Puyrene Benz(a)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pyrene Benz(a)anthracene	1(2013) <20	<20 <20 <100 420 160 <100 <100 <1 <2 <2 <2 <2	0 0 10 13 0 0 0 0 0
TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BTEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<20 <20 <100 380 140 <100 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<20 <100 420 160 <100 <1 <1 <2 <2 <2 <2	0 0 10 13 0 0 0 0 0
TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BTEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<100 380 140 <100 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<100 420 160 <100 <1 <1 <2 <2 <2 <2	0 10 13 0 0 0 0 0
TRH >C16-C34 TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BTEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthylene Anthracene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	380 140 <100 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2	420 160 <100 <1 <1 <2 <2 <2 <2 <2	10 13 0 0 0 0 0
TRH >C34-C40 C10 - C16 Fraction minus Naphthalene (F2) BTEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	140 <100 <2 <2 <2 <2 <2 <2 <2 <1.0	160 <100 <1 <2 <2 <2 <2 <2	13 0 0 0 0 0
C10 - C16 Fraction minus Naphthalene (F2) BTEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<100 <1 <2 <2 <2 <2 <2 <2 <2 <1.0	<100 <1 <2 <2 <2 <2	0 0 0 0
BTEX Benzene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<1 <2 <2 <2 <2 <2 <1.0	<1 <2 <2 <2 <2	0 0 0
Benzene Toluene Toluene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Phenanthrene Fluorene Pyrene Benz(a)anthracene Chrysene Chrysene	<2 <2 <2 <2 <2 <1.0	<2 <2 <2	0 0
Toluene Ethylbenzene Ethylbenzene m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene Benz(a)anthracene Chrysene Enz(a)anthracene	<2 <2 <2 <2 <2 <1.0	<2 <2 <2	0 0
Ethylbenzene m+p-xylene 0-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluorene Phenanthrene Phrenanthrene Fluoranthene Pyrene Benz(a)anthracene Chrysene E	<2 <2 <2 <1.0	<2 <2	0
m+p-xylene o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<2 <2 <1.0	<2	
o-xylene Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<2 <1.0		0
Polycyclic Aromatic Hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<1.0	~2	0
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene		and the second	0
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene		<1.0	0
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Chrysene Fluoranthene Pyrene Pyrene Fluoranthene Pyre		<1.0	0
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<1.0	<1.0	0
Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	<1.0	<1.0	0
Fluoranthene Pyrene Benz(a)anthracene Chrysene	<1.0	<1.0	0
Pyrene Benz(a)anthracene Chrysene	<1.0	<1.0	0
Benz(a)anthracene Chrysene	<1.0	<1.0	0
Chrysene	<1.0	<1.0	0
	<1.0	<1.0	0
Benzo(b)fluoranthene	<1.0	<1.0	0
	<1.0	<1.0	0
Benzo(k)fluoranthene	<1.0	<1.0	0
Benzo(a)pyrene Indeno(1.2.3.cd)pyrene	<0.5 <1.0	<0.5 <1.0	0
Dibenz(a.h)anthracene	<1.0	<1.0	0
Benzo(g.h.i)perylene	<1.0	<1.0	0
Sum of polycyclic aromatic hydrocarbons	<0.5	<0.5	0
Benzo(a)pyrene TEQ (zero)	<0.5	<0.5	0
Dissolved Metals (mg/L)			
Arsenic	0.004	0.003	29
Cadmium	0.0003	0.0002	40
Chromium	0.002	0.002	0
Copper	0.008	0.006	29
Mercury	< 0.0001	<0.0001	0
Nickel	0.014	0.015	7
Lead	0.004	0.005	22
Zinc	0.071	0.069	3
Cations & Anions (mg/L) Calcium	8	8	0
Magnesium	8 5	5	0
Sodium	5 110	109	1
Potassium	10	109	0
Hydroxide Alkalinity as CaCO3	<1	<1	0
Carbonate Alkalinity as CaCO3	<1	<1	0
Bicarbonate Alkalinity as CaCO3	64	67	5
Total Alkalinity as CaCO3	64	67	5
Sulphate, SO4		10	0
Chloride, Cl	10	-	1
Water Hardness as CaCO3 (Calculation)*		118	0

BOLD identifies where RPD results

intralaboratory	interlaboratory	
>50	>60	where both sample results exceed ten x PQL
>75	>85	where both sample results are within 5 to 10 x PQL
>100	>100	where both sample results are within 2 to 5 x PQL
AD>2.5 * PQL		where one or both sample results are <2 x PQL
BOID identified where blocks > 0		

BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Appendix F Laboratory Reports

	CERT	IFICATE OF ANALYSIS	
Work Order	ES1323941	Page	: 1 of 10
Amendment	: 1		
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR STEVE CADMAN	Contact	: Client Services
Address	: PO BOX 564	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	MAITLAND NSW, AUSTRALIA 2320		
E-mail	scadman@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 49344354	Telephone	: +61-2-8784 8555
Facsimile	: +61 02 49344359	Facsimile	: +61-2-8784 8500
Project	: HYDRO BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	: P5130348		
C-O-C number	:	Date Samples Received	: 05-NOV-2013
Sampler	: SC	Issue Date	: 18-FEB-2014
Site	:		
		No. of samples received	: 11
Quote number	: SY/446/12	No. of samples analysed	: 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- ALS is not NATA accredited for the analysis of Bifenthrin in soils when performed under ALS Method EP068D
- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.
- EA200Q: ALS laboratory procedures and methods used for the identification and quantitation of asbestos are consistent with AS4964-2004 and the requirements of the 2013 NEPM for Assessment of Site Contamination
- EA200Q: Asbestos weights and percentages are not covered under the Scope of NATA Accreditation.
 Weights of Asbestos are based on extracted bulk asbestos, fibre bundles, and/or ACM and do not include respirable fibres (if present).
 Percentages for Asbestos content in ACM are based on the 2013 NEPM default values. All numerical results under this method are approximate and should be used as a guide only.

	NATA Accredited Laboratory 825	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been compliance with procedures specified in 21 CFR Part 11.						
NATA	ISO/IEC 17025.	Signatories	Position	Accreditation Category				
WORLD RECOGNISED ACCREDITATION		Ashesh Patel	Inorganic Chemist	Sydney Inorganics				
		Celine Conceicao	Senior Spectroscopist	Sydney Inorganics				
		Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos				
		Pabi Subba	Senior Organic Chemist	Sydney Organics				

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			EMP2-SF1	EMP2-SF2	EMP2-SF3	EMP2-SF4	EMP2-SF5
	Cli	ent sampli	ng date / time	31-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	ES1323941-001	ES1323941-002	ES1323941-003	ES1323941-004	ES1323941-005
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	4.3	14.4	11.9	7.4	5.0
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg	29	25	4	16	6

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			EMP2-SF6	EMP2-SF7	EMP2-SF8	EMP2-SF9	EMP2-QA1
	Cl	ient samplii	ng date / time	31-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	ES1323941-006	ES1323941-007	ES1323941-008	ES1323941-009	ES1323941-010
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	7.6	2.5	3.0	5.4	4.4
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg	4	3	39	20	30

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	EMP2-S11	 	
	Cl	ient samplii	ng date / time	31-OCT-2013 15:00	 	
Compound	CAS Number	LOR	Unit	ES1323941-011	 	
EA055: Moisture Content						
Moisture Content (dried @ 103°C)		1.0	%	12.2	 	
EA200: AS 4964 - 2004 Identification of Asb	estos in bulk	samples				
Asbestos Detected	1332-21-4	0.1	g/kg	Yes	 	
Asbestos Type	1332-21-4	1		Ch	 	
Sample weight (dry)		0.01	g	964	 	
APPROVED IDENTIFIER:		1		C.OWLER	 	
EA200Q: Asbestos Quantification (non-NAT	ΓA)					
Weight Used for % Calculation		0.0001	kg	0.964	 	
Asbestos Containing Material	1332-21-4	0.1	g	<0.1	 	
Fibrous Asbestos		0.002	g	<0.002	 	
Asbestos Containing Material (as 15% Asbestos in ACM >7mm)	1332-21-4	0.01	%	<0.01	 	
Asbestos Fines and Fibrous Asbestos (<7mm)	1332-21-4	0.001	%	<0.001	 	
Trace Asbestos Detected		5	Fibres	No	 	
EG005T: Total Metals by ICP-AES						
Arsenic	7440-38-2	5	mg/kg	9	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	9	 	
Copper	7440-50-8	5	mg/kg	11	 	
Lead	7439-92-1	5	mg/kg	91	 	
Nickel	7440-02-0	2	mg/kg	2	 	
Zinc	7440-66-6	5	mg/kg	128	 	
EG035T: Total Recoverable Mercury by FIN	IS					
Mercury	7439-97-6	0.1	mg/kg	0.4	 	
EP066: Polychlorinated Biphenyls (PCB)						
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	 	
EP068A: Organochlorine Pesticides (OC)						
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	 	

Page : 6 of 10 Work Order : ES1323941 Amendment 1 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	EMP2-S11	 	
	Cli	ient samplir	ng date / time	31-OCT-2013 15:00	 	
Compound	CAS Number	LOR	Unit	ES1323941-011	 	
EP068A: Organochlorine Pesticides						
Aldrin	309-00-2	0.05	mg/kg	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
1 Total Chlordane (sum)		0.05	mg/kg	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
[^] Sum of DDD + DDE + DDT		0.05	mg/kg	<0.05	 	
EP068B: Organophosphorus Pestici	ides (OP)					
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	 	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	 	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	 	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	 	
Diazinon	333-41-5	0.05	mg/kg	<0.05	 	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	 	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	 	
Malathion	121-75-5	0.05	mg/kg	<0.05	 	
Fenthion	55-38-9	0.05	mg/kg	<0.05	 	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	 	
Parathion	56-38-2	0.2	mg/kg	<0.2	 	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	 	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	 	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	 	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	 	

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	EMP2-S11	 	
	Clie	ent sampli	ng date / time	31-OCT-2013 15:00	 	
Compound	CAS Number	LOR	Unit	ES1323941-011	 	
EP068B: Organophosphorus Pesticides (OP) - Continued					
Ethion	563-12-2	0.05	mg/kg	<0.05	 	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	 	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	 	
EP075(SIM)B: Polynuclear Aromatic Hydr	ocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	1.0	 	
Pyrene	129-00-0	0.5	mg/kg	0.9	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	2.4	 	
[^] Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
[^] Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
[^] Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hydrocarbon	IS					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
[^] C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydrocarb	ons - NEPM <u>201</u>	3				
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	EMP2-S11	 	
	Cli	ient sampli	ng date / time	31-OCT-2013 15:00	 	
Compound	CAS Number	LOR	Unit	ES1323941-011	 	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 - Contin	ued			
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1)						
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
>C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
 C10 - C16 Fraction minus Naphthalene (F2) 		50	mg/kg	<50	 	
EP080: BTEXN					1	
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
[^] Sum of BTEX		0.2	mg/kg	<0.2	 	
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP066S: PCB Surrogate						
Decachlorobiphenyl	2051-24-3	0.1	%	66.1	 	
EP068S: Organochlorine Pesticide Su	irrogate					
Dibromo-DDE	21655-73-2	0.1	%	62.0	 	
EP068T: Organophosphorus Pesticide	e Surrogate					
DEF	78-48-8	0.1	%	62.1	 	
EP075(SIM)S: Phenolic Compound Su	irrogates					
Phenol-d6	13127-88-3	0.1	%	95.4	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	112	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	86.2	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.1	%	97.2	 	
Anthracene-d10	1719-06-8	0.1	%	86.2	 	
4-Terphenyl-d14	1718-51-0	0.1	%	87.3	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	89.8	 	
Toluene-D8	2037-26-5	0.1	%	75.1	 	

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID							
, , , , , , , , , , , , , , , , , , ,	,			-					
	ient sampli	ng date / time	31-OCT-2013 15:00						
Compound	CAS Number	LOR	Unit	ES1323941-011					
EP080S: TPH(V)/BTEX Surrogates	EP080S: TPH(V)/BTEX Surrogates - Continued								
4-Bromofluorobenzene	460-00-4	0.1	%	96.5					
	1		i						

Analytical Results

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results								
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples										
EA200: Description	EMP2-S11 - 31-OCT-2013 15:00	Mid brown clay soil with some small red and grey rocks plus two small friable asbestos fibre bundles approx 4								
		x 1 x 1mm								

Surrogate Control Limits

Sub-Matrix: SOIL	Γ	Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surr	ogate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide	Surrogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surr	ogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72.8	133.2
Toluene-D8	2037-26-5	73.9	132.1
4-Bromofluorobenzene	460-00-4	71.6	130.0

QUALITY CONTROL REPORT

Work Order Amendment	: ES1323941 Page : 1		: 1 of 13
Client Contact Address	: ENVIRON AUSTRALIA PTY LTD : MR STEVE CADMAN : PO BOX 564	Laboratory Contact Address	: Environmental Division Sydney : Client Services : 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	MAITLAND NSW, AUSTRALIA 2320 : scadman@environcorp.com : +61 02 49344354 : +61 02 49344359	E-mail Telephone Facsimile	: sydney@alsglobal.com : +61-2-8784 8555 : +61-2-8784 8500
Project Site	: HYDRO BUFFER ZONE :	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
C-O-C number Sampler Order number	: : SC : P5130348	Date Samples Received Issue Date	: 05-NOV-2013 : 18-FEB-2014
Quote number	: SY/446/12	No. of samples received No. of samples analysed	: 11 : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

	Accredited for compliance with	Signatories	Position	Accreditation Category
	ISO/IEC 17025.	Ashesh Patel	Inorganic Chemist	Sydney Inorganics
SED		Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
ON		Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos
		Pabi Subba	Senior Organic Chemist	Sydney Organics

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA055: Moisture Co	ontent (QC Lot: 314735	58)							
ES1323903-011	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	22.4	22.1	1.5	0% - 20%
ES1323940-002	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	4.9	4.7	4.0	No Limit
EA055: Moisture Co	ontent (QC Lot: 314735	59)							
ES1323941-006	EMP2-SF6	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	7.6	6.7	12.3	No Limit
ES1324004-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	17.4	15.5	11.6	0% - 50%
EG005T: Total Meta	Is by ICP-AES (QC Lo	t: 3149799)							
ES1323610-013	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	5	7	41.2	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	4	5	27.3	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	6	9	29.6	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	8	8	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	30	31	3.8	No Limit
ES1323610-024	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	6	6	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	13	12	12.8	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	11	10	10.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	9	8	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	49	47	3.8	No Limit
G035T: Total Rec	overable Mercury by F	IMS (QC Lot: 3149800)							
ES1323610-013	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES1323610-024	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EK040S: Fluoride S	oluble (QC Lot: 31472	39)							
ES1323940-002	Anonymous	EK040S: Fluoride	16984-48-8	1	mg/kg	7	6	0.0	No Limit
ES1323941-005	EMP2-SF5	EK040S: Fluoride	16984-48-8	1	mg/kg	6	6	0.0	No Limit
EP066: Polychlorina	ated Biphenyls (PCB)	(QC Lot: 3147196)							
ES1324019-005	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
P068A: Organ <u>ochl</u>	orine Pesticides (OC)								
ES1324019-005	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
	-	EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit

Page	: 4 of 13
Work Order	ES1323941 Amendment 1
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Sub-Matrix: SOIL	Aatrix: SOIL					Laboratory	Duplicate (DUP) Report			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP068A: Organochlo	orine Pesticides (OC)(QC Lot: 3147195) - continued								
ES1324019-005	Anonymous	EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
ES1324019-036	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
EP068B: Organopho	sphorus Pesticides (OF	P) (QC Lot: 3147195)								
ES1324019-005	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	

Page	5 of 13
Work Order	: ES1323941 Amendment 1
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068B: Organopho	osphorus Pesticides (OP) (QC Lot: 3147195) - continued							
ES1324019-005	Anonymous	EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
ES1324019-036	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075(SIM)B: Polvn	uclear Aromatic Hydroc	arbons (QC Lot: 3148823)							
ES1324173-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page	: 6 of 13
Work Order	ES1323941 Amendment 1
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Sub-Matrix: SOIL	Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP075(SIM)B: Polyn	uclear Aromatic Hydr	rocarbons (QC Lot: 3148823) - continued									
ES1324173-001	Anonymous	EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		hydrocarbons									
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
EP080/071: Total Pe	troleum Hydrocarbon	ns (QC Lot: 3148647)									
ES1323960-003	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
ES1323960-024	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
EP080/071: Total Pe	troleum Hydrocarbon	ns (QC Lot: 3148822)									
ES1324173-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 (QC Lot: 3148647)									
ES1323960-003	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		
ES1323960-024	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 (QC Lot: 3148822)									
ES1324173-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.0	No Limit		
EP080: BTEXN (QC	Lot: 3148647)										
ES1323960-003	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit		
ES1323960-024	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
			106-42-3								

Page	: 7 of 13
Work Order	ES1323941 Amendment 1
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC Lot: 3148647) - continued									
ES1323960-024	Anonymous	EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005T: Total Metals by ICP-AES (QCLot: 3149	799)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	102	87	129
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	96.4	80	122
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	94.7	71	133
EG005T: Copper	7440-50-8	5	mg/kg	<5	32.0 mg/kg	103	86	128
EG005T: Lead	7439-92-1	5	mg/kg	<5	40.0 mg/kg	93.4	81	123
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.0 mg/kg	103	84	130
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	103	81	133
EG035T: Total Recoverable Mercury by FIMS(QCLot: 3149800)							
G035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	77.9	66	112
K040S: Fluoride Soluble (QCLot: 3147239)								
K040S: Fluoride	16984-48-8	1.0	mg/kg	<1	25.0 mg/kg	111	69	117
P066: Polychlorinated Biphenyls (PCB) (QCLo	t: 3147196)							
P066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	92.1	57.4	117
P068A: Organochlorine Pesticides (OC) (QCLc	ot: 3147195)							1
P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	92.6	71	113
P068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	75.7	66	122
P068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	94.8	69	119
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	91.5	71	115
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.8	65	113
P068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.8	68	116
P068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	83.5	68	118
P068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	69.4	68	116
P068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	94.6	68	120
P068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.2	69	119
P068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	73.1	67	121
P068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	76.5	66	118
:P068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	88.6	69	117
P068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	100	67	123
P068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	99.2	76	120
:P068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	95.1	76	120
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	81.7	57.3	115
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	74.9	60	124
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	96.3	67	127
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	71.6	65	123

Page	: 9 of 13
Work Order	ES1323941 Amendment 1
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	ntrol Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
P068A: Organochlorine Pesticides (OC) (QCLot: 3147195)	- continued								
P068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	110	65	129	
P068B: Organophosphorus Pesticides (OP) (QCLot: 3147	195)								
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	82.4	56	126	
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	102	64	128	
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	77.1	54	122	
P068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	86.0	64	124	
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	102	73	117	
P068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	78.3	55	119	
P068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	93.4	69	123	
P068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	105	70	120	
P068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	83.7	71	115	
P068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	93.4	68	114	
P068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	107	68	122	
:P068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	79.0	69	115	
P068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	72.1	68	116	
P068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	91.6	64	120	
P068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	82.1	68	116	
P068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	90.8	70	118	
P068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	103	67	123	
P068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	93.4	42	126	
P075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot	: 3148823)								
P075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	4 mg/kg	99.5	80	124	
P075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	4 mg/kg	89.9	77	123	
P075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	4 mg/kg	92.6	79	123	
P075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	4 mg/kg	91.3	77	123	
P075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	4 mg/kg	95.6	79	123	
P075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	4 mg/kg	96.4	79	123	
P075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	4 mg/kg	96.6	79	123	
P075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	4 mg/kg	97.7	79	125	
P075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	4 mg/kg	87.1	73	121	
P075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	4 mg/kg	95.7	81	123	
P075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	4 mg/kg	85.4	70	118	
P075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	4 mg/kg	97.8	77	123	
P075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	91.7	76	122	
P075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	85.3	71	113	
P075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	84.1	71.7	113	
P075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	83.6	72.4	114	
P080/071: Total Petroleum Hydrocarbons (QCLot: 314864	7)								
P080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	83.8	68.4	128	

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons(QCLot: 3148822)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	98.6	71	131
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	94.5	74	138
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	90.0	64	128
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 (QCLot: 314864	7)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	83.9	68.4	128
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 (QCLot: 314882)	2)						
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	99.1	70	130
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	91.3	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100				
		50	mg/kg		150 mg/kg	91.4	63	131
EP080: BTEXN (QCLot: 3148647)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	94.1	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	79.6	62	128
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	84.3	58	118
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	82.4	60	120
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	89.0	60	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	91.4	62	138

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				M	atrix Spike (MS) Report	Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)				
aboratory sample ID.	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EG005T: Total Me	tals by ICP-AES (QCLot: 3149799)										
ES1323610-013	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	101	70	130				
	EG005T: Cadmium	7440-43-9	50 mg/kg	99.1	70	130					
		EG005T: Chromium	7440-47-3	50 mg/kg	105	70	130				
		EG005T: Copper	7440-50-8	125 mg/kg	95.4	70	130				
		EG005T: Lead	7439-92-1	125 mg/kg	99.8	70	130				
		EG005T: Nickel	7440-02-0	50 mg/kg	104	70	130				
		EG005T: Zinc	7440-66-6	125 mg/kg	114	70	130				
EG035T: Total Re	ecoverable Mercury by FIMS(QCLot: 3149800)									
ES1323610-013	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	85.2	70	130				
EK040S: Fluoride	Soluble (QCLot: 3147239)										
ES1323940-002	Anonymous	EK040S: Fluoride	16984-48-8	25.0 mg/kg	101	70	130				

Page	: 11 of 13
Work Order	ES1323941 Amendment 1
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

ub-Matrix: SOIL				М	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P066: Polychlori	nated Biphenyls (PCB) (QCLot: 3147196)						
ES1324019-005	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	91.6	70	130
EP068A: Organoc	hlorine Pesticides (OC) (QCLot: 3147195)						
ES1324019-005	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	80.9	70	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	90.1	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	73.4	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	85.6	70	130
		EP068: Endrin	72-20-8	2 mg/kg	89.1	70	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	93.9	70	130
P068B: Organop	hosphorus Pesticides (OP) (QCLot: 3147195)						
ES1324019-005	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	94.9	70	130
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	88.6	70	130
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	92.6	70	130
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	82.4	70	130
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	86.7	70	130
P075(SIM)B: Pol	ynuclear Aromatic Hydrocarbons (QCLot: 314	8823)					
ES1324173-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	72.8	70	130
201024170-001	Anonymous	EP075(SIM): Acenaphinene EP075(SIM): Pyrene	129-00-0	10 mg/kg	78.4	70	130
D000/074. Total			120 00 0	i o ingritg	10.1	10	100
	Petroleum Hydrocarbons (QCLot: 3148647)			00 F #	400		100
ES1323960-003	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	106	70	130
P080/071: Total I	Petroleum Hydrocarbons (QCLot: 3148822)						
ES1324173-001	Anonymous	EP071: C10 - C14 Fraction		640 mg/kg	85.9	73	137
		EP071: C15 - C28 Fraction		3140 mg/kg	86.8	53	131
		EP071: C29 - C36 Fraction		2860 mg/kg	76.8	52	132
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 (QCL	.ot: 3148647)					
ES1323960-003	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	104	70	130
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013 (QCL	ot: 3148822)					
ES1324173-001	Anonymous	EP071: >C10 - C16 Fraction	>C10 C16	850 mg/kg	108	73	137
	, nonymouo	EP071: >C16 - C34 Fraction		4800 mg/kg	79.7	53	131
		EP071: >C34 - C40 Fraction		2400 mg/kg	58.7	52	132
P080: BTEXN (C)CL at: 31/86/7)					-	
ES1323960-003	·		71-43-2	2.5 ma/ka	101	70	130
231323900-003	Anonymous	EP080: Benzene	108-88-3	2.5 mg/kg 2.5 mg/kg	92.9	70	130
		EP080: Toluene	100-00-3	2.5 mg/kg 2.5 mg/kg	92.9	70	130
		EP080: Ethylbenzene		2.5 mg/kg 2.5 mg/kg	95.3	70	130
		EP080: meta- & para-Xylene	108-38-3 106-42-3	2.5 mg/kg	52.0	70	130
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	97.5	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	106	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL					Matrix Spike (I	NS) and Matrix S	pike Duplicate	(MSD) Repor	t	
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RP	Ds (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Lim
P068A: Organoch	hlorine Pesticides (OC) (QCL	_ot: 3147195)								
ES1324019-005	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	80.9		70	130		
		EP068: Heptachlor	76-44-8	0.5 mg/kg	90.1		70	130		
		EP068: Aldrin	309-00-2	0.5 mg/kg	73.4		70	130		
		EP068: Dieldrin	60-57-1	0.5 mg/kg	85.6		70	130		
		EP068: Endrin	72-20-8	2 mg/kg	89.1		70	130		
		EP068: 4.4 [°] -DDT	50-29-3	2 mg/kg	93.9		70	130		
P068B: Organopl	hosphorus Pesticides (OP)(QCLot: 3147195)								
S1324019-005	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	94.9		70	130		
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	88.6		70	130		
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	92.6		70	130		
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	82.4		70	130		
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	86.7		70	130		
P066: Polvchlorir	nated Biphenyls (PCB) (QCL	ot: 3147196)								
ES1324019-005	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	91.6		70	130		
K040S: Eluoride	Soluble (QCLot: 3147239)			0.0				11		
S1323940-002	Anonymous	EK040S: Fluoride	16984-48-8	25.0 mg/kg	101		70	130		
D090/071: Total D	Petroleum Hydrocarbons (QC			5 5 5						
ES1323960-003	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	106		70	130		
				32.3 mg/kg	100		70	100		
	,	NEPM 2013 (QCLot: 3148647)	00.040	07.5 //	404		=0	100		
ES1323960-003	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	104		70	130		
P080: BTEXN (Q	CLot: 3148647)									
ES1323960-003	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	101		70	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	92.9		70	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	95.3		70	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	92.0		70	130		
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	97.5		70	130		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	106		70	130		
P080/071: Total P	Petroleum Hydrocarbons (QC	CLot: 3148822)								
S1324173-001	Anonymous	EP071: C10 - C14 Fraction		640 mg/kg	85.9		73	137		
		EP071: C15 - C28 Fraction		3140 mg/kg	86.8		53	131		
		EP071: C29 - C36 Fraction		2860 mg/kg	76.8		52	132		

Page: 13 of 13Work Order: ES1323941 Amendment 1Client: ENVIRON AUSTRALIA PTY LTDProject: HYDRO BUFFER ZONE

Sub-Matrix: SOIL					Matrix Spike (I	MS) and Matrix S	oike Duplicate	e (MSD) Repor	t	
				Spike	Spike Recovery (%)		Recovery	Limits (%)	RP	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 201	3 (QCLot: 3148822) - continued								
ES1324173-001	Anonymous	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	108		73	137		
		EP071: >C16 - C34 Fraction		4800 mg/kg	79.7		53	131		
		EP071: >C34 - C40 Fraction		2400 mg/kg	58.7		52	132		
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCL	.ot: 3148823)								
ES1324173-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	72.8		70	130		
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	78.4		70	130		
EG005T: Total Met	tals by ICP-AES (QCLot: 3149799)									
ES1323610-013	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	101		70	130		
		EG005T: Cadmium	7440-43-9	50 mg/kg	99.1		70	130		
		EG005T: Chromium	7440-47-3	50 mg/kg	105		70	130		
		EG005T: Copper	7440-50-8	125 mg/kg	95.4		70	130		
		EG005T: Lead	7439-92-1	125 mg/kg	99.8		70	130		
		EG005T: Nickel	7440-02-0	50 mg/kg	104		70	130		
		EG005T: Zinc	7440-66-6	125 mg/kg	114		70	130		
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 31	49800)								
ES1323610-013	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	85.2		70	130		

INTERPRETIVE QUALITY CONTROL REPORT									
: ES1323941	Page	: 1 of 7							
: 1									
: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney							
: MR STEVE CADMAN	Contact	: Client Services							
: PO BOX 564	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164							
MAITLAND NSW, AUSTRALIA 2320									
: scadman@environcorp.com	E-mail	: sydney@alsglobal.com							
: +61 02 49344354	Telephone	: +61-2-8784 8555							
: +61 02 49344359	Facsimile	: +61-2-8784 8500							
: HYDRO BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement							
:									
:	Date Samples Received	: 05-NOV-2013							
: SC	Issue Date	: 18-FEB-2014							
: P5130348									
	No. of samples received	: 11							
: SY/446/12	No. of samples analysed	: 11							
	: ES1323941 : 1 : ENVIRON AUSTRALIA PTY LTD : MR STEVE CADMAN : PO BOX 564 MAITLAND NSW, AUSTRALIA 2320 : scadman@environcorp.com : +61 02 49344354 : +61 02 49344359 : HYDRO BUFFER ZONE : : : SC : P5130348	ES1323941 Page 1 ENVIRON AUSTRALIA PTY LTD Laboratory MR STEVE CADMAN Contact PO BOX 564 Address MAITLAND NSW, AUSTRALIA 2320 E-mail scadman@environcorp.com E-mail +61 02 49344354 Telephone +61 02 49344359 Facsimile HYDRO BUFFER ZONE QC Level Date Samples Received SC Issue Date P5130348 No. of samples received							

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withir	holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Pulp Bag (EA055-103)								
EMP2-SF1,	EMP2-SF2,	31-OCT-2013				08-NOV-2013	14-NOV-2013	✓
EMP2-SF3,	EMP2-SF4,							
EMP2-SF5,	EMP2-SF6,							
EMP2-SF7,	EMP2-SF8,							
EMP2-SF9,	EMP2-QA1							
Soil Glass Jar - Unpreserved (EA055-1 EMP2-S11	103)	31-OCT-2013				08-NOV-2013	14-NOV-2013	✓
EA200: AS 4964 - 2004 Identification	of Asbestos in bulk samples							
Snap Lock Bag (EA200)								
EMP2-S11		31-OCT-2013		29-APR-2014		14-NOV-2013	13-MAY-2014	✓
EG005T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)							
EMP2-S11		31-OCT-2013	08-NOV-2013	29-APR-2014	-	11-NOV-2013	29-APR-2014	\checkmark
EG035T: Total Recoverable Mercury	by FIMS					_		
Soil Glass Jar - Unpreserved (EG035T)							
EMP2-S11		31-OCT-2013	08-NOV-2013	28-NOV-2013	√	11-NOV-2013	28-NOV-2013	✓
EK040S: Fluoride Soluble								
Pulp Bag (EK040S)				07 NOV 0040				
EMP2-SF1,	EMP2-SF2,	31-OCT-2013	07-NOV-2013	07-NOV-2013	1	11-NOV-2013	05-DEC-2013	\checkmark
EMP2-SF3,	EMP2-SF4,							
EMP2-SF5,	EMP2-SF6,							
EMP2-SF7,	EMP2-SF8,							
EMP2-SF9,	EMP2-QA1							
EP066: Polychlorinated Biphenyls (P	СВ)							
Soil Glass Jar - Unpreserved (EP066)				44 10 4 00 40				
EMP2-S11		31-OCT-2013	08-NOV-2013	14-NOV-2013	~	09-NOV-2013	18-DEC-2013	✓
EP068A: Organochlorine Pesticides ((OC)							
Soil Glass Jar - Unpreserved (EP068)		31-OCT-2013	08-NOV-2013	14-NOV-2013		09-NOV-2013	18-DEC-2013	,
EMP2-S11		31-001-2013	00-1009-2013	14-1100-2013	-	09-1009-2013	10-DEC-2013	✓

Matrix: SOIL Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v} = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP068B: Organophosphorus Pesticides (OP) Soil Glass Jar - Unpreserved (EP068) 31-OCT-2013 08-NOV-2013 14-NOV-2013 09-NOV-2013 18-DEC-2013 EMP2-S11 1 \checkmark EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Soil Glass Jar - Unpreserved (EP071) 14-NOV-2013 18-DEC-2013 31-OCT-2013 08-NOV-2013 08-NOV-2013 EMP2-S11 1 \checkmark EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Soil Glass Jar - Unpreserved (EP075(SIM)) EMP2-S11 31-OCT-2013 08-NOV-2013 14-NOV-2013 ✓ 08-NOV-2013 18-DEC-2013 \checkmark EP080: BTEXN Soil Glass Jar - Unpreserved (EP080) 31-OCT-2013 08-NOV-2013 14-NOV-2013 08-NOV-2013 14-NOV-2013 EMP2-S11 1 \checkmark EP080/071: Total Petroleum Hydrocarbons Soil Glass Jar - Unpreserved (EP080) 14-NOV-2013 14-NOV-2013 31-OCT-2013 08-NOV-2013 08-NOV-2013 EMP2-S11 1 \checkmark

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	20	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Fluoride - Soluble	EK040S	2	15	13.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
loisture Content	EA055-103	4	40	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	10	10.0	10.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
esticides by GCMS	EP068	2	13	15.4	10.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
olychlorinated Biphenyls (PCB)	EP066	1	9	11.1	10.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	2	19	10.5	10.0	 ✓ 	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	2	19	10.5	10.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	10	10.0	10.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
luoride - Soluble	EK040S	1	15	6.7	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
AH/Phenols (SIM)	EP075(SIM)	1	10	10.0	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
esticides by GCMS	EP068	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
olychlorinated Biphenyls (PCB)	EP066	1	9	11.1	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	1	19	5.3	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	1	19	5.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	10	10.0	5.0	 ✓ 	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	20	5.0	5.0	 ✓ 	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
lethod Blanks (MB)							
luoride - Soluble	EK040S	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
AH/Phenols (SIM)	EP075(SIM)	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
esticides by GCMS	EP068	1	13	7.7	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
olychlorinated Biphenyls (PCB)	EP066	1	9	11.1	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	1	19	5.3	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	1	19	5.3	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	10	10.0	5.0	 ✓ 	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	20	5.0	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
latrix Spikes (MS)							
luoride - Soluble	EK040S	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
AH/Phenols (SIM)	EP075(SIM)	1	10	10.0	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
esticides by GCMS	EP068	1	13	7.7	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
olychlorinated Biphenyls (PCB)	EP066	1	9	11.1	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	1	19	5.3	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	1	19	5.3	5.0	 ✓ 	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	10	10.0	5.0	 ✓ 	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	20	5.0	5.0	4	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in bulk solids	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples
Asbestos - Quantitative Analysis	* EA200Q	SOIL	Asbestos Materials Content with Confirmation of Identification by AS 4964 - 2004 Asbestos
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Fluoride - Soluble	EK040S	SOIL	APHA 21st ed., 4500 FC Soluble Fluoride is determined after a 1:5 soil/water extract using an ion selective electrode.
Polychlorinated Biphenyls (PCB)	EP066	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
Pesticides by GCMS	EP068	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option A - Concentrating)	ORG17A	SOIL	In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Page	: 6 of 7
Work Order	: ES1323941 Amendment 1
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Preparation Methods	Method	Matrix	Method Descriptions
Tumbler Extraction of Solids (Option B -	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1
Non-concentrating)			DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

s; STT = Starile Sodium Thiosulfate Preserved Bottles.			reserved Bottles,	n Thiosulfate P	= Sterile Sodiur	d Bottles; STT =	dine Preserve	1Bag; Lí ≂ Lugois io	Soils; B = Unpreserved	Acid Sulphate (Bottle: ASS = Plastic Bag for	E = EDTA Preserved Bottles; ST = Sterile	Z = Zinc Acetate Preserved Bottls
Plastic; F = Formaldehyde Preserved Glass;	1 Plastic Sulfuric Preserved P	lastic; AG = Amber Glass Unpreserved; AP - Alfrietght Unpreserved Plastic HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfunc	I Bred; AP - Alfr preserved Spec	r Glass Unpres stic; HS = HC	l 1ic; AG = Ambp 1 preserved Pla	Preserved Plass Blass; H = HC	Jm Hydroxide ? arved Amber C	reserved; S = Sodiu SG = Sulfuric Prese	odium Hydroxide/Cd Pi Ight Unpreserved Vlal	ed; AV = Alrfre	estic: ORC = Nillic Preserved	vonichingr Codesr: P = Unpreserved Plastle; N = Nind: Preserved Plastle; ORC = Nilde Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved; Plastle; Preserved; Plastle; Pl	Weter Confahrer Codes: P = U Weter Confahrer Codes: P = U V = VOA Vial HCI Preserved: VB
							TOTAL	TC				, , , , , , , , , , , , , , , , , , ,	
								-	0			- -	
	<	7	2	<	5	\	2	+20	250ml gluss	S	¢	II - 511	
	/								Ę	<	K	- QA1	8-
-	ļ				Ì.		-					in repair	8
Telephone : + 61-2-8784 8555												11 - SF-8	8
					<u> </u> . 		 					11 - SEZ	~
				. . 		5						" - SF6	5
E3132341				- !				 				4 - SES	ን
		 							 			4-15 - 1	7
Sydney	<u> </u>			 .								··· · 5F3	~
Environmental Division			- 				 			-		" TSF2	С
	 		-	•		<	-	Bay	Pulp B	5	31/10/13	EMP2-SFI :	
dunding, or samples requiring specific cc analysis etc.	Asbestos in Soil 200 N	8 metuls. CCP/OPP/PBS		PAHS	Fluoride, TPH/BTEX PAHS	Soluble	TOTAL BOTTLES	des below)	TYPE & PRESERVATIVE (refer fo codes below)	MATRIX	DATE / TIME	SAMPLEID	
	ANALYSIS REQUIRED including SUITES (NB. Sulle Codes must be listed to allract sulle price) Where Metals are required, specify Total (unifiered bolle required) or Disablyed (field fibered bolle required)	VB. Suite Codes m le required) or Disso	otal (unfilered boll	IIRED includ iquited, specify T	LYSIS REQL	ANA		CONTAINER INFORMATION	CONTA		ETAILS 3) Water(W)	SAMPLE DETAILS MATRIX: Solid(S) Water(W)	ALS USE ONLY
						-	5	orp.com	Scadman Genviron Corp. com	220 CC	Scadm	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	MENTS/SPECIAL HAN
(7:00 6/11/13 (9,00	6/11/13	10+-5	2 5			3	ド			(adman	Steve	Email Reports to (will default to PM if no other addresses are listed); Email Invoice to (will default to PM if no other addresses are listed);	l Reports to (will defau I Invoice to (will default
Spec Received BI:	RELINGUISHED BT: Spr-		Ph -	RECEIVER		BY:			<u>CU23 583 538</u> fault):	EDD FORMAT (or default):	EDD FORMAT (or de	S / NO)	SAMPLER: C. C.
	Other comment:	5		F: 1 2] [4922444	H: 4966	CONTACT PH:	C Cc	PROJECT MANAGER: Stev
receipt? No NA Random Sample Temperature on Receipt °C .	rreceipt? Random Sample 1	5 6 7	COC SEQUENCE NUMBER (Circle)		000		\rightarrow	,	E NO.:	ALS QUOTE NO .:	PROJECT NO .:	ER ZWE	PROJECT: HYDRO
FOR LABORATORY USE ONLY (Ctrcle) Custody Seal Infact? Yes No NIA	FOR LABORATO			e):	Standard TAT (List due date): Non Standard or urgen! TAT (List due date):	Standard TAT (LIst due date): Non Standard or urgent TAT (L	tandard TAT (on Standard o		TURNAROUND REQUIREMENTS : (Standard TAT may be kinger for some tests e.g Ultra Trace Organics)	TURNAROUND REQ (Standard TAT may be lon e.g Ultra Trace Organics)	FILL Chica NSW	RJ. THE JUS	OFFICE. 193,50 GLIN
Phi 02 8724 8655 E. samples.sythey@ale.gobai.com CTOWNSVLLE 14-15 Cosma Court Bohle CLD 4518 Phi 07 4756 8050 E. Lomassia.euro Mollengang Assided.com CWOLLONGONG 99 Kerny Street Wollengang NSW 2650 Phi 02 4225 5125 E. wolongong@alsplobal.com		PH: 02 4969 5458 E: samplas newesste@etsjdebal.com DNONRA 413 Geary Taos Nisth Nowm NSW 2241 PI: 02 443 3058 E: newing@atsjdebal.com DPERTH 10 Hod Way Mataga WA 6050 Ph: 08 9209 7655 E: samplas.com/sgatsjdebal.com	Pri: 02 4966 9468 E. samplas newaside@idsjidba DNAWRA 4/13 Geary Teach North Kowra NSW 25- Pri: 02 4432 9068 E. nowing@idsjidba.com CIPERTH 10 Hod Way Malaga WA 6050 CIPERTH 10 Hod Way Malaga WA 6050 Ph: 08 5209 7655 E. samples.peth@alsylobal.com	Ph: 02 4908 943 DNOWRA 4/13 C Ph: 02 4423 2063 Ph: 02 4423 2063 Ph: 03 9209 7669 Ph: 05 9209 7669		al.com mgvale VIC 3171 ne®alsglobal.com NSW 2850 xglobal.com	ntackay@alsglob Vestall Road Spri samples.melboun vy Road Mudgee mudgee.mail@als	Pht. 07 49수i 0177 G: nasekay@afsglóbal.com Oxi6E:BOURSNE 2-4 Westall Road Sprimptale VIC 3171 Pht. 03 5549 5000 E: samples.metbourne@alsglobal.com OM/UCGEE 27 Sydnay.Road Amsternet@alsglobal.com OM/UCGEE 27 Sydnay.Road Amsternet@alsglobal.com Pht. 02 6372 6735 E: mutges.mst@alsglobal.com	8	r rovana socover Galsglobal.com Stafford QLD 405 brisbane@alsglob brive Clinton Q ah Drive Clinton Q ah Brive Clinton Q	Phr.08 253 0150 C: antektor Physics on Yones Phr.08 253 0150 C: antektor (Bargiotacon Deriseburg 22 Stand Stree Statistics (UD -0.52 Phr.07 3243 7222 E: samyles.brisbane@alsglobal.com CIUL/DST7046 C salemonodab Drike Clinon OLD 4350 Phr.07 7471 5500 E: gladsbane@alsglobal.com	CHAIN OF CUSTODY ALS Laboradoy; please (ick →	
DNEY 277-209 Woodbark Road Smith/Feld NSW 2164		Varahmele NSW 280	Toes Gum Road V	NEWICACTICS		2LD 4740	if Road Madkay	DMACICAY 78 Harbox		and a second			

	CERTIF	ICATE OF ANALYSIS	
Work Order	ES1323471	Page	: 1 of 6
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR STEVE CADMAN	Contact	: Client Services
Address	: PO BOX 560	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	NORTH SYDNEY NSW, AUSTRALIA 2060		
E-mail	: scadman@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 99548114	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: HYDRO BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	: AS130348		
C-O-C number	:	Date Samples Received	: 31-OCT-2013
Sampler	: SC	Issue Date	: 08-NOV-2013
Site	:		
		No. of samples received	: 3
Quote number	: SY/285/10	No. of samples analysed	: 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

• EN055: Ionic Balance out of acceptable limits for sample ID (EMP2-SW12 and EMP2-QA2) due to analytes not quantified in this report.

	NATA Accredited Laboratory 825			ated below. Electronic signing has been carried out in
NATA	Accredited for compliance with ISO/IEC 17025.	compliance with procedures specified in 21 C Signatories	CFR Part 11. Position	Accreditation Category
	130/1EC 17023.		Inorganic Chemist	
		Ashesh Patel	0	Sydney Inorganics
WORLD RECOGNISED		Hoa Nguyen	Senior Inorganic Chemist	Sydney Inorganics
ACCREDITATION		Merrin Avery	Supervisor - Inorganic	Newcastle - Inorganics
		Pabi Subba	Senior Organic Chemist	Sydney Organics
		Raymond Commodor	Instrument Chemist	Sydney Inorganics

Page : 3 of 6 Work Order : ES1323471 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	EMP2-SW12	EMP2-SW13	EMP2-QA2	
	Cl	ient samplii	ng date / time	31-OCT-2013 15:00	31-OCT-2013 15:00	31-OCT-2013 15:00	
Compound	CAS Number	LOR	Unit	ES1323471-001	ES1323471-002	ES1323471-003	
EA005: pH							
pH Value		0.01	pH Unit	7.10	7.70	7.16	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	713	676	711	
EA075: Redox Potential							
Redox Potential		0.1	mV	128	118	128	
pH Redox		0.01	pH Unit	6.8	7.2	6.8	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	64	78	67	
Total Alkalinity as CaCO3		1	mg/L	64	78	67	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	10	20	10	
ED045G: Chloride Discrete analyser							
Chloride	16887-00-6	1	mg/L	117	102	118	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	8	9	8	
Magnesium	7439-95-4	1	mg/L	5	5	5	
Sodium	7440-23-5	1	mg/L	110	104	109	
Potassium	7440-09-7	1	mg/L	10	4	10	
EG020T: Total Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L	0.004	<0.001	0.003	
Cadmium	7440-43-9	0.0001	mg/L	0.0003	<0.0001	0.0002	
Chromium	7440-47-3	0.001	mg/L	0.002	<0.001	0.002	
Copper	7440-50-8	0.001	mg/L	0.008	0.005	0.006	
Lead	7439-92-1	0.001	mg/L	0.004	<0.001	0.005	
Nickel	7440-02-0	0.001	mg/L	0.014	0.072	0.015	
Zinc	7440-66-6	0.005	mg/L	0.071	0.073	0.069	
EG035T: Total Recoverable Mercury by	FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	
EN055: Ionic Balance							
Total Anions		0.01	meq/L	5.19	4.85	4.88	
Total Cations		0.01	meq/L	5.85	5.49	5.81	

Page : 4 of 6 Work Order : ES1323471 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	EMP2-SW12	EMP2-SW13	EMP2-QA2	
	Clie	ent sampli	ng date / time	31-OCT-2013 15:00	31-OCT-2013 15:00	31-OCT-2013 15:00	
Compound	CAS Number	LOR	Unit	ES1323471-001	ES1323471-002	ES1323471-003	
EN055: Ionic Balance - Continued							
Ionic Balance		0.01	%	5.99	6.11	8.70	
EP025: Oxygen - Dissolved (DO)							
Dissolved Oxygen		0.1	mg/L	2.8	10.2	1.9	
EP075(SIM)B: Polynuclear Aromatic Hyd	rocarbons						
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	<1.0	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	<1.0	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0	<1.0	
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	<1.0	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	<1.0	
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	<1.0	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	<1.0	
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	<1.0	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	<1.0	
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	<1.0	<1.0	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	<1.0	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	
[^] Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5	<0.5	<0.5	
[^] Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5	<0.5	
EP080/071: Total Petroleum Hydrocarbor	ıs						
C6 - C9 Fraction		20	µg/L	<20	<20	<20	
C10 - C14 Fraction		50	µg/L	<50	<50	<50	
C15 - C28 Fraction		100	µg/L	300	<100	340	
C29 - C36 Fraction		50	µg/L	150	<50	160	
[^] C10 - C36 Fraction (sum)		50	µg/L	450	<50	500	
EP080/071: Total Recoverable Hydrocarb	ons - NEPM 2013	3					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	<20	
(F1)		100		-100			
>C10 - C16 Fraction	>C10_C16	100	µg/L	<100	<100	<100	
>C16 - C34 Fraction		100	µg/L	380	<100	420	

Page : 5 of 6 Work Order : ES1323471 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	EMP2-SW12	EMP2-SW13	EMP2-QA2	
	Cli	ent sampli	ing date / time	31-OCT-2013 15:00	31-OCT-2013 15:00	31-OCT-2013 15:00	
Compound	CAS Number	LOR	Unit	ES1323471-001	ES1323471-002	ES1323471-003	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 - Contin	ued				
>C34 - C40 Fraction		100	µg/L	140	<100	160	
^ >C10 - C40 Fraction (sum)		100	µg/L	520	<100	580	
C10 - C16 Fraction minus Naphthalene (F2)		100	µg/L	<100	<100	<100	
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1	<1	<1	
Toluene	108-88-3	2	µg/L	<2	<2	<2	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	
^ Total Xylenes	1330-20-7	2	µg/L	<2	<2	<2	
^ Sum of BTEX		1	µg/L	<1	<1	<1	
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	
EP075(SIM)S: Phenolic Compound Su	rrogates						
Phenol-d6	13127-88-3	0.1	%	34.4	35.3	36.4	
2-Chlorophenol-D4	93951-73-6	0.1	%	69.9	65.1	85.0	
2.4.6-Tribromophenol	118-79-6	0.1	%	91.6	91.8	90.3	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.1	%	89.6	69.0	89.0	
Anthracene-d10	1719-06-8	0.1	%	74.7	86.4	88.2	
4-Terphenyl-d14	1718-51-0	0.1	%	76.8	89.4	90.6	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	96.2	94.1	112	
Toluene-D8	2037-26-5	0.1	%	105	96.7	101	
4-Bromofluorobenzene	460-00-4	0.1	%	107	96.2	110	

(ALS)

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound	Surrogates		
Phenol-d6	13127-88-3	10.0	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27.4	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

QUALITY CONTROL REPORT

Work Order	: ES1323471	Page	: 1 of 10
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR STEVE CADMAN	Contact	Client Services
Address	: PO BOX 560 NORTH SYDNEY NSW, AUSTRALIA 2060	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: scadman@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 99548114	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: HYDRO BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 31-OCT-2013
Sampler	: SC	Issue Date	: 08-NOV-2013
Order number	: AS130348		
		No. of samples received	: 3
Quote number	: SY/285/10	No. of samples analysed	: 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Accredited for compliance with	Signatories	Position	Accreditation Category
	Ashesh Patel	Inorganic Chemist	Sydney Inorganics
	Hoa Nguyen	Senior Inorganic Chemist	Sydney Inorganics
	Merrin Avery	Supervisor - Inorganic	Newcastle - Inorganics
	Pabi Subba	Senior Organic Chemist	Sydney Organics
	Raymond Commodor	Instrument Chemist	Sydney Inorganics

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
A005: pH (QC Lot	:: 3139433)								
ES1323471-001	EMP2-SW12	EA005: pH Value		0.01	pH Unit	7.10	7.12	0.3	0% - 20%
A010P: Conductiv	ity by PC Titrator (QC	Lot: 3140541)							
ES1323471-001	EMP2-SW12	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	710	706	0.6	0% - 20%
ES1323761-005	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	16100	16000	0.4	0% - 20%
A010P: Conductiv	ity by PC Titrator (QC	Lot: 3144909)							
ES1323958-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	3690	3690	0.0	0% - 20%
ES1324033-004	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1740	1740	0.1	0% - 20%
A075: Redox Pote	ntial (QC Lot: 3138589)								
ES1323471-001	EMP2-SW12	EA075: Redox Potential		0.1	mV	128	125	2.1	0% - 20%
		EA075: pH Redox		0.01	pH Unit	6.8	6.8	0.0	0% - 20%
D037P: Alkalinity I	by PC Titrator (QC Lot:								
S1323471-001	EMP2-SW12	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	64	64	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	64	64	0.0	0% - 20%
ES1323475-001 Anonymous	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	126	124	1.7	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	126	124	1.7	0% - 20%
D037P: Alkalinity I	by PC Titrator (QC Lot:	: 3144910)							
ES1323989-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	8	8	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	8	8	0.0	No Limit
S1324066-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	56	57	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	56	57	0.0	0% - 20%
D041G: Sulfate (Tu	urbidimetric) as SO4 2-	by DA (QC Lot: 3140450)							
S1323471-001	EMP2-SW12	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	9	9	0.0	No Limit
S1323614-007	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	1370	1360	0.4	0% - 20%
D045G: Chloride D	Discrete analyser (QC L	.ot: 3140449)							
ES1323471-001	EMP2-SW12	ED045G: Chloride	16887-00-6	1	mg/L	118	119	1.2	0% - 20%
ES1323614-007	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	391	390	0.3	0% - 20%

Page	: 4 of 10
Work Order	: ES1323471
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED093F: Dissolved I	Major Cations (QC Lot	: 3140448)							
ES1323471-001	EMP2-SW12	ED093F: Calcium	7440-70-2	1	mg/L	8	8	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	5	5	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	110	112	1.8	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	10	10	0.0	0% - 50%
ES1323614-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	22	22	0.0	0% - 20%
ES1323614-001 Ar		ED093F: Magnesium	7439-95-4	1	mg/L	24	24	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	93	94	1.1	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	6	6	0.0	No Limit
EG020T: Total Metal	Is by ICP-MS (QC Lot:	3139186)							
ES1323475-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.007	0.002	106	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.066	0.078	17.7	0% - 20%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.065	0.073	11.5	0% - 50%
ES1323475-008	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.004	0.002	55.2	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
EG035T: Total Reco	overable Mercury by FI	MS (QC Lot: 3140492)							
EP1308316-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES1323475-008	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 3142313)							
ES1323471-001	EMP2-SW12	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES1323711-004	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	70	90	23.4	No Limit
EP080/071: Total Re	coverable Hvdrocarbo	ns - NEPM 2013 (QC Lot: 3142313)							
ES1323471-001	EMP2-SW12	EP080: C6 - C10 Fraction	C6 C10	20	μg/L	<20	<20	0.0	No Limit
ES1323711-004	Anonymous	EP080: C6 - C10 Fraction	C6 C10	20	μg/L	70	90	21.9	No Limit
EP080: BTEXN (QC	-								
ES1323471-001	EMP2-SW12	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
		Li 000. meta- u para-xylene	106-42-3	-	r- 'r	_	_	0.0	
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit

Page	5 of 10
Work Order	: ES1323471
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC	Lot: 3142313) - contin	nued							
ES1323471-001	EMP2-SW12	EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit
ES1323711-004	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA010P: Conductivity by PC Titrator (QCLot: 314	0541)								
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	2000 µS/cm	110	95	113	
EA010P: Conductivity by PC Titrator (QCLot: 314	4909)								
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	2000 µS/cm	111	95	113	
EA075: Redox Potential (QCLot: 3138589)									
EA075: Redox Potential		0.1	mV		86 mV	99.9	95	112	
ED037P: Alkalinity by PC Titrator (QCLot: 314054	0)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	94.6	81	111	
ED037P: Alkalinity by PC Titrator (QCLot: 314491	0)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	89.8	81	111	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	(QCLot: 3140450)								
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	99.3	86	122	
ED045G: Chloride Discrete analyser (QCLot: 314)449)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	98.3	77	123	
ED093F: Dissolved Major Cations (QCLot: 314044	48)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	100	87	113	
D093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	97.1	89	113	
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	110	79	113	
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	101	87	115	
G020T: Total Metals by ICP-MS (QCLot: 3139186	5)								
G020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	98.7	79	121	
G020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.8	82	114	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	97.2	83	115	
G020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	102	83	117	
G020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	100	85	115	
G020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	102	83	117	
G020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	98.4	76	118	
EG035T: Total Recoverable Mercury by FIMS (Q0	CLot: 3140492)								
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	114	77	115	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon	s (QCLot: 3139415)								
EP075(SIM): Naphthalene	91-20-3	0.2	µg/L		20 µg/L	84.2	58.6	119	
		1	µg/L	<1.0					
EP075(SIM): Acenaphthylene	208-96-8	0.2	µg/L		20 µg/L	81.1	63.6	114	
		1	µg/L	<1.0					

Page	: 7 of 10
Work Order	: ES1323471
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(QCLot: 3139415) - cor	ntinued							
EP075(SIM): Acenaphthene	83-32-9	0.2	µg/L		20 µg/L	81.5	62.2	113	
		1	µg/L	<1.0					
EP075(SIM): Fluorene	86-73-7	0.2	µg/L		20 µg/L	81.9	63.9	115	
		1	µg/L	<1.0					
EP075(SIM): Phenanthrene	85-01-8	0.2	µg/L		20 µg/L	79.8	62.6	116	
		1	µg/L	<1.0					
EP075(SIM): Anthracene	120-12-7	0.2	µg/L		20 µg/L	81.9	64.3	116	
		1	µg/L	<1.0					
EP075(SIM): Fluoranthene	206-44-0	0.2	µg/L		20 µg/L	82.0	63.6	118	
		1	µg/L	<1.0					
EP075(SIM): Pyrene	129-00-0	0.2	µg/L		20 µg/L	91.5	63.1	118	
		1	µg/L	<1.0					
EP075(SIM): Benz(a)anthracene	56-55-3	0.2	µg/L		20 µg/L	82.1	64.1	117	
		1	µg/L	<1.0					
EP075(SIM): Chrysene	218-01-9	0.2	µg/L		20 µg/L	84.0	62.5	116	
		1	µg/L	<1.0					
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.2	µg/L		20 µg/L	91.3	61.7	119	
		1	µg/L	<1.0					
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.2	µg/L		20 µg/L	93.4	61.7	117	
		1	μg/L	<1.0					
EP075(SIM): Benzo(a)pyrene	50-32-8	0.2	µg/L		20 µg/L	88.3	63.3	117	
		0.5	μg/L	<0.5					
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.2	µg/L		20 µg/L	83.5	59.9	118	
		1	µg/L	<1.0					
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.2	µg/L		20 µg/L	84.8	61.2	117	
		1	µg/L	<1.0					
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.2	µg/L		20 µg/L	85.8	59.1	118	
		1	μg/L	<1.0					
EP075(SIM): Sum of polycyclic aromatic hydrocarbons		1	µg/L	<1.0					
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3	(120/1/)								
EP071: C10 - C14 Fraction		50	µg/L	<50	2000 µg/L	100	59	129	
		100	μg/L	<100	3000 µg/L	100	71	123	
EP071: C15 - C28 Fraction		50		<50	2000 µg/L	76.3	62	120	
EP071: C29 - C36 Fraction		50	µg/L	\00	2000 µg/L	10.3	02	120	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3	142313)								
EP080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	111	75	127	
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 (QCLot: 313941	4)							
EP071: >C10 - C16 Fraction	>C10_C16	100	µg/L	<100	2500 μg/L	114	58.9	131	
EP071: >C16 - C34 Fraction		100	µg/L	<100	3500 µg/L	93.7	73.9	138	
EP071: >C34 - C40 Fraction		100	µg/L	<100					
		50	µg/L		1500 µg/L	70.1	67	127	

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			ery Limits (%) High 127 124 129 120 120 121 122
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 (QCLot: 314231)	3)						
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	310 µg/L	114	75	127
EP080: BTEXN (QCLot: 3142313)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 µg/L	117	70	124
EP080: Toluene	108-88-3	2	μg/L	<2	10 µg/L	116	65	129
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 µg/L	114	70	120
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	10 µg/L	111	69	121
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 µg/L	120	72	122
EP080: Naphthalene	91-20-3	5	µg/L	<5	10 µg/L	112	70	124

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 3140450) ES1323471-001 EMP2-SW12 ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 10 mg/L 106 70 ED045G: Chloride Discrete analyser (QCLot: 3140449) ED045G: Chloride 16887-00-6 250 mg/L 95.8 70 EG020T: Total Metals by ICP-MS (QCLot: 3139186) EO045G: Chloride 7440-38-2 1 mg/L 105 70 EG020A: C. Comuna 7440-43-9 0.25 mg/L 106 70 EG020A: C. Comuna 7440-63-8 1 mg/L 102 70 EG020A: C. Comper 7440-63-8 1 mg/L 102 70 EG020A: C. Comper 7440-66-8 1 mg/L 90.6 70 EG020A: <th>ub-Matrix: WATER</th> <th></th> <th></th> <th></th> <th>Ma</th> <th>atrix Spike (MS) Report</th> <th></th> <th></th>	ub-Matrix: WATER				Ma	atrix Spike (MS) Report		
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 3140450) ES1323471-001 EMP2-SW12 ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 10 mg/L 106 70 ED045G: Chloride Discrete analyser (QCLot: 3140449) ED045G: Chloride 16887-00-6 250 mg/L 95.8 70 EG020T: Total Metals by ICP-MS (QCLot: 3139186) EO045G: Chloride 7440-38-2 1 mg/L 105 70 EG020A: C. Comuna 7440-43-9 0.25 mg/L 106 70 EG020A: C. Comuna 7440-63-8 1 mg/L 102 70 EG020A: C. Comper 7440-63-8 1 mg/L 102 70 EG020A: C. Comper 7440-66-8 1 mg/L 90.6 70 EG020A: <th></th> <th></th> <th></th> <th></th> <th>Spike</th> <th>SpikeRecovery(%)</th> <th>Recovery I</th> <th>.imits (%)</th>					Spike	SpikeRecovery(%)	Recovery I	.imits (%)
Boot Control Contere Control Control Control Control Control Control Co	aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ID or g/L ID or g/L <t< td=""><td>ED041G: Sulfate (</td><td>Turbidimetric) as SO4 2- by DA (QCLot: 314</td><td>0450)</td><td></td><td></td><td></td><td></td><td></td></t<>	ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 314	0450)					
ED045G: Chloride Discrete analyser (QCLot: 3140449) ES1323471-001 EMP2-SW12 ED045G: Chloride 16887-00-6 250 mg/L 95.8 70 EG0201: Total Metals by ICP-MS (QCLot: 3139186) ES1323475-002 Anonymous EG020A-T: Arsenic 7440-38-2 1 mg/L 105 70 EG020A-T: Cadmium 7440-43-9 0.25 mg/L 106 70 EG020A-T: Cadmium 7440-43-9 0.25 mg/L 106 70 EG020A-T: Capper 7440-43-9 0.25 mg/L 106 70 EG020A-T: Capper 7440-43-9 0.25 mg/L 106 70 EG020A-T: Capper 7440-50-8 1 mg/L 103 70 EG020A-T: Lead F339-92-1 1 mg/L 115 70 EG020A-T: Lead F339-92-1 1 mg/L 94.5 70 EG020A-T: Lead F339-92-1 1 mg/L 94.5 70 EG020A-T: Capper F440-66-6 1 mg/L 94.5 70 EG020A-T: Capper F440-66-6 1 mg/L 94.5 70 EG020A-T: Capper F2080/071 F2080/071 F2080/071 F2080/071 F2080/071 F2080/071 F2080/071 F2	ES1323471-001	EMP2-SW12	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	106	70	130
ES1323471-001 EMP2-SW12 ED045G: Chloride 16887-00-6 250 mg/L 95.8 70 EG0201: Total Metals by ICP-MS (QCLot: 3139186) EG020A-T: Arsenic 7440-38-2 1 mg/L 105 70 106 70 </td <td></td> <td></td> <td></td> <td></td> <td>10 mg/L</td> <td>102</td> <td>70</td> <td>130</td>					10 mg/L	102	70	130
EG0201: Total Metals by ICP-MS (QCLot: 3139186) EG020A-T: Arsenic 7440-38-2 1 mg/L 105 70 70 ES1323475-002 Anonymous EG020A-T: Arsenic 7440-43-9 0.25 mg/L 106 70 70 EG020A-T: Cadmium 7440-43-9 0.25 mg/L 106 70 70 EG020A-T: Chromium 7440-47-3 1 mg/L 103 70 70 EG020A-T: Copper 7440-50-8 1 mg/L 102 70 70 EG020A-T: Nickel 7440-20 1 mg/L 115 70 70 EG020A-T: Nickel 7440-66-6 1 mg/L 90.6 70 70 EG035T: Total Recoverable Mercury by FIMS (QCLot: 3140492) EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 EP080/071: Total Petroleum Hydrocarbons (QCLot: 3142313) EP080: C6 - C9 Fraction 325 µg/L 100 70 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3142313)	ED045G: Chloride	Discrete analyser (QCLot: 3140449)						
ES1323475-002 Anonymous EG020A-T: Arsenic 7440-38-2 1 mg/L 105 70 EG020A-T: Cadmium 7440-43-9 0.25 mg/L 106 70 1 EG020A-T: Cadmium 7440-43-9 0.25 mg/L 103 70 1 EG020A-T: Copper 7440-50-8 1 mg/L 102 70 1 EG020A-T: Copper 7440-50-8 1 mg/L 102 70 1 EG020A-T: Nickel 7440-50-8 1 mg/L 102 70 1 EG020A-T: Nickel 7440-02-0 1 mg/L 90.6 70 1 EG020A-T: Nickel 7440-02-0 1 mg/L 90.6 70 1 EG020A-T: Nickel 7440-66-6 1 mg/L 90.6 70 1 EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 1 EP1308316-002 Anonymous EP080: C6 - C9 Fraction 325 µg/L 100 70 1 EP080/071: Total Recoverable Hydrocarbons -	ES1323471-001	EMP2-SW12	ED045G: Chloride	16887-00-6	250 mg/L	95.8	70	130
EG020A-T: Cadmium 7440-43-9 0.25 mg/L 106 70 EG020A-T: Cadmium 7440-43-9 0.25 mg/L 106 70 1 EG020A-T: Chromium 7440-47-3 1 mg/L 103 70 1 EG020A-T: Copper 7440-50-8 1 mg/L 102 70 1 EG020A-T: Copper 7440-50-8 1 mg/L 115 70 1 EG020A-T: Lead 7439-92-1 1 mg/L 115 70 1 EG020A-T: Nickel 7440-62-0 1 mg/L 94.5 70 1 EG020A-T: Zinc 7440-66-6 1 mg/L 90.6 70 1 EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 1 EP080/071: Total Petroleum Hydrocarbons (QCLot: 3142313) EP080: C6 - C9 Fraction 325 µg/L 100 70 1 EP080/071: Total Petroleum Hydrocarbons - NEPM 2013 (QCLot: 3142313) 325 µg/L 100 70 1	EG020T: Total Me	tals by ICP-MS (QCLot: 3139186)						
EG020A-T: Chromium 7440-47-3 1 mg/L 103 70 EG020A-T: Chromium 7440-47-3 1 mg/L 102 70 1 EG020A-T: Copper 7440-50-8 1 mg/L 102 70 1 EG020A-T: Lead 7439-92-1 1 mg/L 115 70 1 EG020A-T: Nickel 7440-62-0 1 mg/L 94.5 70 1 EG020A-T: Zinc 7440-66-6 1 mg/L 90.6 70 1 EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 1 EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 1 EP1308316-002 Anonymous EP080: C6 - C9 Fraction 325 µg/L 100 70 1 EP080/071: Total Petroleum Hydrocarbons - NEPM 2013 (QCLot: 3142313) 325 µg/L 100 70 1	ES1323475-002 Anonymous	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	105	70	130
EG020A-T: Copper 7440-50-8 1 mg/L 102 70 EG020A-T: Copper 7439-92-1 1 mg/L 115 70 EG020A-T: Lead 7440-02-0 1 mg/L 94.5 70 EG020A-T: Nickel 7440-66-6 1 mg/L 90.6 70 EG020A-T: Zinc 7440-66-6 1 mg/L 90.6 70 EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 EP080/071: Total Petroleum Hydrocarbons (QCLot: 3140492) EP080: C6 - C9 Fraction 325 µg/L 100 70 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3142313) 325 µg/L 100 70			EG020A-T: Cadmium	7440-43-9	0.25 mg/L	106	70	130
EG020A-T: Lead 7439-92-1 1 mg/L 115 70 EG020A-T: Lead 7440-02-0 1 mg/L 94.5 70 EG020A-T: Nickel 7440-02-0 1 mg/L 90.6 70 EG020A-T: Zinc 7440-66-6 1 mg/L 90.6 70 EG035T: Total Recoverable Mercury by FIMS (QCLot: 3140492) EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 EP080/071: Total Petroleum Hydrocarbons (QCLot: 3142313) EP080: C6 - C9 Fraction 325 µg/L 100 70 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3142313) EP080: C6 - C9 Fraction 325 µg/L 100 70			EG020A-T: Chromium	7440-47-3	1 mg/L	103	70	130
Indication Indicat			EG020A-T: Copper	7440-50-8	1 mg/L	102	70	130
EG020A-T: Zinc 7440-66-6 1 mg/L 90.6 70 EG035T: Total Recoverable Mercury by FIMS (QCLot: 3140492) EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 EP080/071: Total Petroleum Hydrocarbons (QCLot: 3142313) EP080: C6 - C9 Fraction 325 µg/L 100 70 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3142313) 325 µg/L 100 70			EG020A-T: Lead	7439-92-1	1 mg/L	115	70	130
EG035T: Total Recoverable Mercury by FIMS (QCLot: 3140492) EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 EP080/071: Total Petroleum Hydrocarbons (QCLot: 3142313) EP080: C6 - C9 Fraction 325 µg/L 100 70 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3142313) EP080: C6 - C9 Fraction 325 µg/L 100 70			EG020A-T: Nickel	7440-02-0	1 mg/L	94.5	70	130
EP1308316-002 Anonymous EG035T: Mercury 7439-97-6 0.010 mg/L 72.5 70 EP080/071: Total Petroleum Hydrocarbons (QCLot: 3142313) ES1323717-006 Anonymous EP080: C6 - C9 Fraction 325 μg/L 100 70 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3142313) EP080: C6 - C9 Fraction 325 μg/L 100 70			EG020A-T: Zinc	7440-66-6	1 mg/L	90.6	70	130
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3142313) ES1323717-006 Anonymous EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3142313)	EG035T: Total Re	coverable Mercury by FIMS (QCLot: 314049)2)					
ES1323717-006 Anonymous EP080: C6 - C9 Fraction 325 μg/L 100 70 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3142313)	EP1308316-002	Anonymous	EG035T: Mercury	7439-97-6	0.010 mg/L	72.5	70	130
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3142313)	EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 3142313)						
	ES1323717-006	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	100	70	130
ES1323717-006 Anonymous EP080: C6 - C10 Fraction C6 C10 375 µg/L 97.7 70	EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013(Q	CLot: 3142313)					
	ES1323717-006	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	97.7	70	130
EP080: BTEXN (QCLot: 3142313)	EP080: BTEXN (Q	CLot: 3142313)						

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (QC	CLot: 3142313) - continued						
ES1323717-006	Anonymous	EP080: Benzene	71-43-2	25 µg/L	82.2	70	130
		EP080: Toluene	108-88-3	25 µg/L	85.3	70	130
		EP080: Ethylbenzene	100-41-4	25 µg/L	88.7	70	130
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	91.1	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 µg/L	96.6	70	130
		EP080: Naphthalene	91-20-3	25 µg/L	103	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (I	MS) and Matrix S	oike Duplicate	e (MSD) Repor	t	
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPI	Ds (%)
Laboratory sample ID	e ID Client sample ID Method: Compound		CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limi
EG020T: Total Met	als by ICP-MS(QCLot: 3139	9186)								
ES1323475-002	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	105		70	130		
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	106		70	130		
		EG020A-T: Chromium	7440-47-3	1 mg/L	103		70	130		
	EG020A-T: Copper	7440-50-8	1 mg/L	102		70	130			
	EG020A-T: Lead	7439-92-1	1 mg/L	115		70	130			
		EG020A-T: Nickel	7440-02-0	1 mg/L	94.5		70	130		
		EG020A-T: Zinc	7440-66-6	1 mg/L	90.6		70	130		
ED045G: Chloride	Discrete analyser (QCLot: 3	3140449)								
ES1323471-001	EMP2-SW12	ED045G: Chloride	16887-00-6	250 mg/L	95.8		70	130		
ED041G: Sulfate (1	Turbidimetric) as SO4 2- by I	DA (QCLot: 3140450)								
ES1323471-001	EMP2-SW12	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	106		70	130		
				10 mg/L	102		70	130		
EG035T: Total Re	coverable Mercury by FIMS	(QCLot: 3140492)								
EP1308316-002	Anonymous	EG035T: Mercury	7439-97-6	0.010 mg/L	72.5		70	130		
EP080/071: Total F	etroleum Hydrocarbons (Q	CLot: 3142313)								
ES1323717-006	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	100		70	130		
EP080/071: Total F	ecoverable Hydrocarbons -	NEPM 2013 (QCLot: 3142313)								
ES1323717-006	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 µg/L	97.7		70	130		
EP080: BTEXN (Q	CLot: 3142313)									
ES1323717-006	Anonymous	EP080: Benzene	71-43-2	25 µg/L	82.2		70	130		
		EP080: Toluene	108-88-3	25 µg/L	85.3		70	130		
		EP080: Ethylbenzene	100-41-4	25 µg/L	88.7		70	130		

Page	: 10 of 10
Work Order	: ES1323471
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Sub-Matrix: WATER					Matrix Spike (M	IS) and Matrix Spi	ke Duplicate	e (MSD) Repo	rt	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD	s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080: BTEXN (QC	Lot: 3142313) - continued									
ES1323717-006	Anonymous	EP080: meta- & para-Xylene	108-38-3	25 µg/L	91.1		70	130		
			106-42-3							
		EP080: ortho-Xylene	95-47-6	25 µg/L	96.6		70	130		
		EP080: Naphthalene	91-20-3	25 µg/L	103		70	130		

	EC4202474	Para				
Work Order	: ES1323471	Page	: 1 of 8			
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney			
Contact	: MR STEVE CADMAN	Contact	: Client Services			
Address	PO BOX 560	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164			
	NORTH SYDNEY NSW, AUSTRALIA 2060					
E-mail	: scadman@environcorp.com	E-mail	: sydney@alsglobal.com			
Telephone	: +61 02 99548114	Telephone	: +61-2-8784 8555			
Facsimile	:	Facsimile	: +61-2-8784 8500			
Project	: HYDRO BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement			
Site	:					
C-O-C number	:	Date Samples Received	: 31-OCT-2013			
Sampler	: SC	Issue Date	: 08-NOV-2013			
Order number	: AS130348					
		No. of samples received	: 3			
Quote number	: SY/285/10	No. of samples analysed	: 3			

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Withir	holding time
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural (EA005) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013				01-NOV-2013	31-OCT-2013	x
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013		28-NOV-2013		04-NOV-2013	28-NOV-2013	~
EA075: Redox Potential								
Clear Plastic Bottle - Natural (EA075) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013				01-NOV-2013	31-OCT-2013	×
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013		14-NOV-2013		04-NOV-2013	14-NOV-2013	~
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013		28-NOV-2013		04-NOV-2013	28-NOV-2013	✓
ED045G: Chloride Discrete analyser								
Clear Plastic Bottle - Natural (ED045G) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013		28-NOV-2013		04-NOV-2013	28-NOV-2013	✓
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural (ED093F) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013		07-NOV-2013		04-NOV-2013	07-NOV-2013	✓
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unspecified (EG020A-T) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013	04-NOV-2013	29-APR-2014	~	04-NOV-2013	29-APR-2014	✓

Page	: 3 of 8
Work Order	: ES1323471
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withir	n holding time
Method		Sample Date	Extraction / Preparation				Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Unspecified (EG035T) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013				06-NOV-2013	28-NOV-2013	~
EP025: Oxygen - Dissolved (DO)								
Clear Plastic Bottle - Natural (EP025) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013				01-NOV-2013	31-OCT-2013	×
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013	05-NOV-2013	07-NOV-2013	~	07-NOV-2013	15-DEC-2013	~
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM)) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013	05-NOV-2013	07-NOV-2013	~	07-NOV-2013	15-DEC-2013	~
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013	06-NOV-2013	14-NOV-2013	~	06-NOV-2013	14-NOV-2013	~
EP080/071: Total Petroleum Hydrocarbons			•					
Amber VOC Vial - Sulfuric Acid (EP080) EMP2-SW12, EMP2-QA2	EMP2-SW13,	31-OCT-2013	06-NOV-2013	14-NOV-2013	~	06-NOV-2013	14-NOV-2013	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Ikalinity by PC Titrator	ED037-P	4	33	12.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
hloride by Discrete Analyser	ED045G	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
onductivity by PC Titrator	EA010-P	4	27	14.8	10.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
lajor Cations - Dissolved	ED093F	2	16	12.5	10.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
H	EA005	1	6	16.7	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
edox Potential	EA075	1	3	33.3	10.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	11	18.2	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-MS - Suite A	EG020A-T	2	16	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	2	20	10.0	10.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
Ikalinity by PC Titrator	ED037-P	2	33	6.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
hloride by Discrete Analyser	ED045G	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
onductivity by PC Titrator	EA010-P	2	27	7.4	5.0	 ✓ 	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
ajor Cations - Dissolved	ED093F	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
AH/Phenols (GC/MS - SIM)	EP075(SIM)	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Redox Potential	EA075	3	3	100.0	15.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	11	9.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-MS - Suite A	EG020A-T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
lethod Blanks (MB)							
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
conductivity by PC Titrator	EA010-P	2	27	7.4	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
lajor Cations - Dissolved	ED093F	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
AH/Phenols (GC/MS - SIM)	EP075(SIM)	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	11	9.1	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-MS - Suite A	EG020A-T	1	16	6.3	5.0	 ✓ 	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	6	16.7	5.0	 ✓ 	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Aatrix Spikes (MS)							
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	11	9.1	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Fotal Mercury by FIMS	EG035T	1	20	5.0	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page	5 of 8
Work Order	: ES1323471
Client	: ENVIRON AUSTRALIA PTY LTD
Project	HYDRO BUFFER ZONE

Matrix: WATER				Evaluation	: × = Quality Cor	ntrol frequency no	bt within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Total Metals by ICP-MS - Suite A	EG020A-T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Redox Potential	EA075	WATER	In House (Ion selective electrode)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	APHA 21st ed., 4500-SO4 Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	APHA 21st ed., 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	Major Cations is determined based on APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises the 0.45um filtered sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
			Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
			Hardness parameters are calculated based on APHA 21st ed., 2340 B. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)

Analytical Methods	Method	Matrix	Method Descriptions
Ionic Balance by PCT DA and Turbi SO4 DA	EN055 - PG	WATER	APHA 21st Ed. 1030F. The Ionic Balance is calculated based on the major Anions and Cations. The major anions include Alkalinity, Chloride and Sulfate which determined by PCT and DA. The Cations are determined by Turbi SO4 by DA. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Oxygen - Dissolved	EP025	WATER	APHA 21st ed., 4500-O G. Dissolved Oxygen Probe. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
TPH - Semivolatile Fraction	EP071	WATER	USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
TPH Volatiles/BTEX	EP080	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

Materia MALA TED

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER							
Method		E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005: pH							
Clear Plastic Bottle - Natural EMP2-SW12, EMP2-QA2	EMP2-SW13,				01-NOV-2013	31-OCT-2013	1
EA075: Redox Potential							
Clear Plastic Bottle - Natural EMP2-SW12, EMP2-QA2	EMP2-SW13,				01-NOV-2013	31-OCT-2013	1
EP025: Oxygen - Dissolved (DO)							
Clear Plastic Bottle - Natural EMP2-SW12, EMP2-QA2	EMP2-SW13,				01-NOV-2013	31-OCT-2013	1

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

[T	<u>-</u>						
	No NIA No NIA		ation	k levels, specific QC				
Inferd NSW 2164 (Jobal com e CLD 4818 Nat@alsglobal.com rigong NSW 2500 iat.com		Anterime	Additional Information	Commerts on likely contantinent levels, diulions, or samples requiring specific CC analysis etc.		Environmental Division Sydney Work Order ES1323471	Telephone : +61-2-8784 8555	Served Gilass;
odpark Road Smit uples. sychery@als besma Couth Bohle mesulta. enwonmen emry Street Wollo liongong@etsglob	NLY (Circle) Aupon Receipt	RECE	Add	Comments on dulutons, or sea anatysis etc.		nvironmental Div Sydney Work Order ES13234	tone: +6	maldehyde Pro
CISYTAVEY 277-289 Wooojpark Road Smithald NSW 2764 Pr CO 2874 8656 E.: senaplasa sychrey@aastpoluation CUTOWNSWILE 14-16: Denem Court Bolvie CLD 146 H 07 4793 0600 E. tawnesvilla.curonmani@adaptobal.com Prix 02 4225 3126 E. walongoong@atapbal.com	TORY USE O ct? ce bricks preser		t suffe price)	· · ·		Envi		Plastic; F = For
1/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20	FOR LABORATORY USE ONLY (Circle) Custody Seal Intact? Free loof frozen Ice bricks present upon receipt Random Sample Temperature on Receipt:	7 Other comment. RELINQUISHED BY: DATERIME	Politica					astic fituric Preserved
ok NSW 2504 sglobal.com SW 2541 bal.com	~`~		te Codes must b	1/241 m'm' 42				Unpreserved Pla bottler, SP = Sut
um Road Warsho ies.rewcashe@al ce North Nowra Ni ສຫຼືalsgiobal.com ilaga WA 6030 ples.pertri@elsgio	NUMBER (C	s + s	ITES (NB. Suit	Total Alerals	771			AP - Airfreight V rved Speciation of Bottles.
CINCASTLE 6 Rose Cum Road Warehook NSW 2014 Ph: 02 1908 B438 Examplerar reveration and other com CINCWRA 413 Centy Place North Novan NSW 2541 Ph: 02 4423 2058 E: normgalagiobai.com CIPERTH 10 Hd Way Malaga WA 6050 Ph: 08 0209 7056 E: samples, pertigelsylobal.com	COC SEQUENCE NUMBER (Circle)	" Me	including SU	· × 719/411	777			s Unpreserved; HS = HCl preserved; sulfate Preserve
CINEWC Ph: 02 4 Ph: 02 4 Ph: 02 4 Ph: 08 (or: 1 2 RECEIVED BY RECEIVED BY DATE/TIME: Z/h.J/		SNOINA SNOINA	> > >			3 = Amber Glas served Plastic, 1 lie Sodium Thio
740 s VIC 3171 sglobal.com 2850 L.com	Standard TAT (List due date): Non Standard or urgant TAT (List due date):	58:4	MALYSIS REQUIE	O('#8'73	>>>			erved Plastic, Al
wed Mackay QLU . ay@alsglobal.com all Road Springval. des.malbourne@a ad Mudyee NSW ae .mail@alsgloba	Slandard TAT (LIst due date): Non Standard or urgent TAT (L	RELINQUIGHED BY: DATENTIME:		TOTAL BOTTLES	9 , 1			AL XL AL XL 1 Hydroxide Press ved Amber Glas ine Presserved Bo
LINACIE(XY 78 Harbour Roed Nacriary CLU 4740 Ptr. 07 4944 0177 E: mediangales(plobal.com CINE 18 ESOURIS E: 4 under Roed Stringulas VLC 3771 18 03 8540 9590 E: samples, melbour-me@ats(plobal.com DNUCOEE 27 Sychary Roed Mucyea NSW 2860 Ptr. 02 8372 8755 E: mukgae, mal@ats(plobal.com			O C	artive low)	TX ACH			TOTAL rd; S = Sodium Hy Sulfuric Preserved J = Lugols lodine F
LIMACK Ph: 07 4 Ph: 03 8 Ph: 03 8 Ph: 03 8 Ph: 02 8	REMENTS : r for some tests	582538	SCOCHMAN CONTAINER INF	TYPE & PRESERVATIVE (refer to codes below)	2017 40			idelCd Preserve ved Vial SG = : rreserved Bag. L
55 153 1444.com QLD 4660	TURNAROUND REQUIREMENTS : (Slandard TAT may be longer for some tests e.gUtra Trace Orgetics) ALS QUOTE NO.: COUNTRY OF ORIGIN:	152	1> 50	TYPE (refi	500m 0 250 m			Sodium Hydrox reight Unprese Soils; B = Unp
DJDELAIDE 21 Burnas Road Pocratas SA 6095 Phr: 06 8559 0860 E. actenate@alsgnbual.com EIRN928ANE 22 Shawen Street Startford on D- 4053 EIRN928ANE 22 Shawen Street Startford on D- 4053 Coll.ADST 722 E. E. caryllos.xitatame@alsgnbual.com Coll.ADST 724 E. carylos.xitatame@alsgnbual.com Coll.ADST 724 E. cardione@alsgnbual.com Coll.ADST 724 E	TURNAROUND R (Standard TAT may be 8.0. Ultra Trace.Orget 8.1. Ultra Trace.Orget ALS QUOTE NO.: COUNTRY OF ORI	CONTACT PH: 4496 SAMPLER MOBILE: 04 EDD FORMAT (or default):		MATRIX	3			ed ORC; SH= ervec; AV = Alr or Acid Sulphat
IDE 21 Burma Rod 59 0830 E: adeiaio NE 32 Shand Ste 13 7222 E: cample 13 7222 E: cample 13 7222 E: callemo 15 800 E: gladslo		CONTACT PH: 44 SAMPLER MOBILE: EDD FORMAT (or de Steve Condunated	· ·	DATE / TIME	2			≂ Nitric Preser fal Sultúric Preser 5 = Plastic Bag
DADELA Phi: 0833 Phi: 0833 Phi: 0732 Phi: 0732 Phi: 0732 Phi: 07732	ALIA Y/ VE JUNATICA AC - PROJECT NO.: PURCHASE ORDER NO.:		R DISPOSAL: SAMPLE DETALLS MATRIX: Solid(S) Water(W)	DATE	3/10			d Plastic, ORC ed: VS = VOA V erfic Bottle; AS
STODY	1 . I . I . I . I . I	C.C.L.M.C.A. her addresses are l	DISPOSA		SW13 SW13 QA2			antin Preserve Adphate Preserve Boddes: ST = St
CHAIN OF CUSTODY ALS Laboratory: please tick ≫	3-11/2	VC (Cc. NO) A If no other au If no other au	SISTORAGE	SAMPLE ID	2-SW QA			ved Plastic: N Vial Sodium Bk DTA Preserved
CHAI ALS Lab	CLIENT: ENVIRON AN OFFICE: 193 50 Globe RA PROJECT: HYDRO BULLE ORDER NUMBER: AS130 3 L4	PROJECT MANAGER: Steve Columnary SAMPLER: SAMPLER: Score Columnary COC Emailed to ALS? (YES / NO) Email Reports to [will default to PM if no other addresses are listed): Email Invoice to [will default to PM if no other addresses are listed):	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: SAMPLE I ALS USE ONLY MATRIX: SAMPLE I		V E E			TOTAL VS TOTAL VS TOTAL VS TOTAL VS TOTAL VS Solution VS VS
N I	: FAUL ct: HYD ct: HYD	PROJECT MANAGER: SAMPLER: COC Emailed to ALS? 1 Email Reports to [will de Email Invoice to (will de	ALS USE ONLY	LAB ID	-4			Container Code: A Vial HCI Press A Catate Press
N	CLIENT: OFFICE: PROJECT: ORDER NU	PROJECT 1 SAMPLER: COC Email COC Email Email frepo	COMM					Water (V = VO) Z = Zino

-

CERTIFICATE OF ANALYSIS

Work Order	[:] ES1408817	Page	: 1 of 12
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: STEVE CADMAN	Contact	: Client Services
Address	Eastpoint Complex Suite 19B, Level 2 50 Glebe Road PO Box 435 The Junction NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	scadman@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	:	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: HYDRO BUFFER ZONE INVESTIGATION	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	: AS130348		
C-O-C number	:	Date Samples Received	: 20-MAR-2014
Sampler	: KW, SC	Issue Date	: 29-APR-2014
Site	:		
		No. of samples received	: 8
Quote number	: SY/433/13	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

	NATA Accredited Laboratory 825	<i>Signatories</i> This document has been electronically	signed by the authorized signatories indica	ted below. Electronic signing has been carried out in
NATA	Accredited for compliance with	compliance with procedures specified in 21 CF	R Part 11.	
	ISO/IEC 17025.	Signatories	Position	Accreditation Category
		Ashesh Patel	Inorganic Chemist	Sydney Inorganics
WORLD RECOGNISED		Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
ACCREDITATION		Pabi Subba	Senior Organic Chemist	Sydney Organics
		Shaun Spooner	Asbestos Identifier	Newcastle - Asbestos
		Wisam Marassa	Inorganics Coordinator	Sydney Inorganics

Page : 3 of 12 Work Order : ES1408817 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	P15 TP1 0.2-0.5	P15 TP2 0.3-0.6	P15 TP3 0.3-0.5	P15 TP4 0.3-0.5	P15 TP5 0.3-0.5
	Cl	ient sampli	ng date / time	18-MAR-2014 15:00				
Compound	CAS Number	LOR	Unit	ES1408817-001	ES1408817-002	ES1408817-003	ES1408817-004	ES1408817-005
EA002 : pH (Soils)								
pH Value		0.1	pH Unit	5.2				
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	13.0	8.5	9.9	11.3	15.6
EA200: AS 4964 - 2004 Identificatior	n of Asbestos in bulk	samples						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	Yes
Asbestos Type	1332-21-4	-		-	-	-	-	Ch + Am
Sample weight (dry)		0.01	g	41.6	40.0	46.7	43.0	42.1
APPROVED IDENTIFIER:		-		S.SPOONER	S.SPOONER	S.SPOONER	S.SPOONER	S.SPOONER
ED008: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g	4.8				
Exchangeable Magnesium		0.1	meq/100g	2.5				
Exchangeable Potassium		0.1	meq/100g	0.3				
Exchangeable Sodium		0.1	meq/100g	0.1				
Cation Exchange Capacity		0.1	meq/100g	7.7				
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	7	8	13	7	11
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	19	18	14	5	17
Copper	7440-50-8	5	mg/kg	<5	17	97	10	12
Lead	7439-92-1	5	mg/kg	16	72	109	33	9
Nickel	7440-02-0	2	mg/kg	<2	16	10	7	9
Zinc	7440-66-6	5	mg/kg	20	154	217	74	52
EG035T: Total Recoverable Mercur	y by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
EP004: Organic Matter								
Organic Matter		0.5	%	<0.5				
Total Organic Carbon		0.5	%	<0.5				
EP068A: Organochlorine Pesticides	s (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 4 of 12 Work Order : ES1408817 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	P15 TP1 0.2-0.5	P15 TP2 0.3-0.6	P15 TP3 0.3-0.5	P15 TP4 0.3-0.5	P15 TP5 0.3-0.5
	Cli	ent sampli	ng date / time	18-MAR-2014 15:00				
Compound	CAS Number	LOR	Unit	ES1408817-001	ES1408817-002	ES1408817-003	ES1408817-004	ES1408817-005
EP068A: Organochlorine Pesticide								
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
[^] Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
↑ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Sum of DDD + DDE + DDT		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP068B: Organophosphorus Pest	icides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Page : 5 of 12 Work Order : ES1408817 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	P15 TP1 0.2-0.5	P15 TP2 0.3-0.6	P15 TP3 0.3-0.5	P15 TP4 0.3-0.5	P15 TP5 0.3-0.5
	Cl	ient sampli	ng date / time	18-MAR-2014 15:00				
Compound	CAS Number	LOR	Unit	ES1408817-001	ES1408817-002	ES1408817-003	ES1408817-004	ES1408817-005
EP068B: Organophosphorus Pestici	des (OP) - Continued							
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.6	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	1.4	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	1.4	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.8	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.8	<0.5	<0.5
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	1.1	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.9	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.6	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbo	ns	0.5	mg/kg	<0.5	<0.5	7.6	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	1.1	<0.5	<0.5
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	1.4	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.7	1.2	1.2
EP080/071: Total Petroleum Hydroca	arbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50

Page : 6 of 12 Work Order : ES1408817 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	P15 TP1 0.2-0.5	P15 TP2 0.3-0.6	P15 TP3 0.3-0.5	P15 TP4 0.3-0.5	P15 TP5 0.3-0.5
	Cl	ient sampli	ing date / time	18-MAR-2014 15:00				
Compound	CAS Number	LOR	Unit	ES1408817-001	ES1408817-002	ES1408817-003	ES1408817-004	ES1408817-005
EP080/071: Total Recoverable Hydroc		3						
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP068S: Organochlorine Pesticide Su	Irrogate							
Dibromo-DDE	21655-73-2	0.1	%	96.0	90.3	83.5	95.6	90.0
EP068T: Organophosphorus Pesticid	e Surrogate							
DEF	78-48-8	0.1	%	97.0	95.0	82.2	113	105
EP075(SIM)S: Phenolic Compound Su	urrogates							
Phenol-d6	13127-88-3	0.1	%	90.5	104	86.0	85.6	86.2
2-Chlorophenol-D4	93951-73-6	0.1	%	97.3	99.7	92.5	89.0	93.9
2.4.6-Tribromophenol	118-79-6	0.1	%	113	115	97.5	92.6	105
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	97.7	103	94.1	97.4	95.2
Anthracene-d10	1719-06-8	0.1	%	101	104	95.1	97.9	95.6
4-Terphenyl-d14	1718-51-0	0.1	%	102	106	98.1	101	99.2
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	73.1	79.1	84.8	82.3	81.1
Toluene-D8	2037-26-5	0.1	%	83.9	86.3	94.4	89.3	88.3
4-Bromofluorobenzene	460-00-4	0.1	%	92.3	93.6	99.8	100	96.9

Page : 7 of 12 Work Order : ES1408817 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	P15 TP6 0.3-0.5	P15 TP7 0.1-0.2	P15 TP9 0.1-0.2		
	Clie	ent sampli	ng date / time	18-MAR-2014 15:00	18-MAR-2014 15:00	18-MAR-2014 15:00		
Compound	CAS Number	LOR	Unit	ES1408817-006	ES1408817-007	ES1408817-008		
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	8.6	3.8	18.6		
EA200: AS 4964 - 2004 Identification of	Asbestos in bulk	samples						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No		
Asbestos Type	1332-21-4	-		-	-	-		
Sample weight (dry)		0.01	g	47.0	49.2	45.3		
APPROVED IDENTIFIER:		-		S.SPOONER	S.SPOONER	S.SPOONER		
EG005T: Total Metals by ICP-AES						1	1	
Arsenic	7440-38-2	5	mg/kg	7	6	<5		
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1		
Chromium	7440-47-3	2	mg/kg	11	8	6		
Copper	7440-50-8	5	mg/kg	21	8	<5		
Lead	7439-92-1	5	mg/kg	94	9	7		
Nickel	7440-02-0	2	mg/kg	16	48	10		
Zinc	7440-66-6	5	mg/kg	254	34	24		
EG035T: Total Recoverable Mercury b	y FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1		
EP068A: Organochlorine Pesticides (O	C)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05		
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05		
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05		
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05		
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05		
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05		
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05		
[^] Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05		
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05		
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05		
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05		

Page : 8 of 12 Work Order : ES1408817 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	P15 TP6 0.3-0.5	P15 TP7 0.1-0.2	P15 TP9 0.1-0.2	
	Cli	ent sampli	ng date / time	18-MAR-2014 15:00	18-MAR-2014 15:00	18-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	ES1408817-006	ES1408817-007	ES1408817-008	
EP068A: Organochlorine Pesticides (O	C) - Continued						
[^] Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	
[^] Sum of DDD + DDE + DDT		0.05	mg/kg	<0.05	<0.05	<0.05	
EP068B: Organophosphorus Pesticide	s (OP)						
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	
EP075(SIM)B: Polynuclear Aromatic Hy	/drocarbons						
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	

Page : 9 of 12 Work Order : ES1408817 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	P15 TP6 0.3-0.5	P15 TP7 0.1-0.2	P15 TP9 0.1-0.2	
	Cl	ient samplii	ng date / time	18-MAR-2014 15:00	18-MAR-2014 15:00	18-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	ES1408817-006	ES1408817-007	ES1408817-008	
EP075(SIM)B: Polynuclear Aromatic Hyd	Irocarbons - Cont	inued					
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	
[^] Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	<0.5	
[^] Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	
A Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	
[^] Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	
EP080/071: Total Petroleum Hydrocarbo	ns						
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	
[^] C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	
EP080/071: Total Recoverable Hydrocarl	bons - NEPM 201	3					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	<50	
>C16 - C34 Fraction		100	mg/kg	120	<100	<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	
>C10 - C40 Fraction (sum)		50	mg/kg	120	<50	<50	
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	

Page : 10 of 12 Work Order : ES1408817 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	P15 TP6 0.3-0.5	P15 TP7 0.1-0.2	P15 TP9 0.1-0.2	
	Cli	ient sampli	ing date / time	18-MAR-2014 15:00	18-MAR-2014 15:00	18-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	ES1408817-006	ES1408817-007	ES1408817-008	
EP080: BTEXN - Continued							
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	
∖ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	
EP068S: Organochlorine Pesticide	e Surrogate						
Dibromo-DDE	21655-73-2	0.1	%	93.8	86.4	105	
EP068T: Organophosphorus Pesti	icide Surrogate						
DEF	78-48-8	0.1	%	73.2	86.8	113	
EP075(SIM)S: Phenolic Compound	d Surrogates						
Phenol-d6	13127-88-3	0.1	%	80.8	84.6	84.3	
2-Chlorophenol-D4	93951-73-6	0.1	%	86.0	89.4	89.5	
2.4.6-Tribromophenol	118-79-6	0.1	%	108	105	109	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.1	%	93.4	96.0	106	
Anthracene-d10	1719-06-8	0.1	%	93.6	96.7	97.9	
4-Terphenyl-d14	1718-51-0	0.1	%	98.0	101	101	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	80.0	84.6	80.4	
Toluene-D8	2037-26-5	0.1	%	80.8	88.8	82.0	
4-Bromofluorobenzene	460-00-4	0.1	%	90.2	98.2	91.8	

Analytical Results

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of	Asbestos in bulk samples	
EA200: Description	P15 TP1 0.2-0.5 - 18-MAR-2014 15:00	Mid red - brown clay soil with red and grey rocks plus a trace of vegetation.
EA200: Description	P15 TP2 0.3-0.6 - 18-MAR-2014 15:00	Mid brown clay soil with red and grey rocks plus a trace of vegetation.
EA200: Description	P15 TP3 0.3-0.5 - 18-MAR-2014 15:00	Pale grey - brown clay soil with red and grey rocks plus a trace of vegetation.
EA200: Description	P15 TP4 0.3-0.5 - 18-MAR-2014 15:00	Pale grey clay soil with red and grey rocks plus a trace of vegetation.
EA200: Description	P15 TP5 0.3-0.5 - 18-MAR-2014 15:00	Mid red - brown clay soil with grey rocks plus one friable asbestos fibre bundle approx 2 x 1 x 1 mm.
EA200: Description	P15 TP6 0.3-0.5 - 18-MAR-2014 15:00	Pale brown clay soil with grey rocks plus a trace of vegetation.
EA200: Description	P15 TP7 0.1-0.2 - 18-MAR-2014 15:00	Pale grey clay soil with grey rocks plus some small synthetic mineral fibre bundles and a trace of vegetation.
EA200: Description	P15 TP9 0.1-0.2 - 18-MAR-2014 15:00	Pale grey - brown clay soil with grey and brown rocks plus some metal fragments and a trace of vegetation.

Surrogate Control Limits

Sub-Matrix: SOIL		Recover	y Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogate	•		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surro	gate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogate	es		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72.8	133.2
Toluene-D8	2037-26-5	73.9	132.1
4-Bromofluorobenzene	460-00-4	71.6	130.0

QUALITY CONTROL REPORT

Work Order	ES1408817	Page	: 1 of 7
Client		Laboratory	: Environmental Division Sydney
Contact	: STEVE CADMAN	Contact	: Client Services
Address	Eastpoint Complex Suite 19B, Level 2 50 Glebe Road PO Box 435 The Junction NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: scadman@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	:	Telephone	+61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: HYDRO BUFFER ZONE INVESTIGATION	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 20-MAR-2014
Sampler	: KW, SC	Issue Date	: 29-APR-2014
Order number	AS130348		
		No. of samples received	: 8
Quote number	: SY/433/13	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

NATA Accredited Signatories

Laboratory 825

7 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

compliance with	
ISO/IEC 17025. Ashesh Patel Inorganic Chemist Sydney Inorganics	
Celine Conceicao Senior Spectroscopist Sydney Inorganics	
Pabi Subba Senior Organic Chemist Sydney Organics	
Shaun Spooner Asbestos Identifier Newcastle - Asbestos	
Wisam Marassa Inorganics Coordinator Sydney Inorganics	

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA002 : pH (Soils)	(QC Lot: 3400690)								
ES1408818-002	Anonymous	EA002: pH Value		0.1	pH Unit	4.7	4.4	6.6	0% - 20%
ED008: Exchangeab	le Cations (QC Lot: 340315	5)							
ES1408817-001	P15 TP1 0.2-0.5	ED008: Exchangeable Calcium		0.1	meq/100g	4.8	4.8	0.0	0% - 20%
		ED008: Exchangeable Magnesium		0.1	meq/100g	2.5	2.5	0.0	0% - 20%
		ED008: Exchangeable Potassium		0.1	meq/100g	0.3	0.3	0.0	0% - 20%
		ED008: Exchangeable Sodium		0.1	meq/100g	0.1	0.1	0.0	0% - 20%
		ED008: Cation Exchange Capacity		0.1	meq/100g	7.7	7.7	0.0	0% - 20%
EP004: Organic Mat	ter (QC Lot: 3402744)								
ES1408817-001	P15 TP1 0.2-0.5	EP004: Organic Matter		0.5	%	<0.5	<0.5	0.0	No Limit
		EP004: Total Organic Carbon		0.5	%	<0.5	<0.5	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED008: Exchangeable Cations (QCLot: 34031	55)								
ED008: Exchangeable Calcium		0.1	meq/100g	<0.1	1 meq/100g	100	90	128	
ED008: Exchangeable Magnesium		0.1	meq/100g	<0.1	1.67 meq/100g	100	86	120	
ED008: Exchangeable Potassium		0.1	meq/100g	<0.1	0.51 meq/100g	100	85	135	
ED008: Exchangeable Sodium		0.1	meq/100g	<0.1	0.87 meq/100g	100	86	128	
ED008: Cation Exchange Capacity		0.1	meq/100g	<0.1					
EG005T: Total Metals by ICP-AES (QCLot: 340	00304)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	114	92	130	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	108	87	121	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	105	80	136	
EG005T: Copper	7440-50-8	5	mg/kg	<5	32.0 mg/kg	112	93	127	
EG005T: Lead	7439-92-1	5	mg/kg	<5	40.0 mg/kg	106	86	124	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.0 mg/kg	109	93	131	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	115	81	133	
EG035T: Total Recoverable Mercury by FIMS	(QCLot: 3400305)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	91.1	70	105	
EP004: Organic Matter (QCLot: 3402744)									
EP004: Organic Matter		0.5	%	<0.5	4.58 %	94.5	85	105	
EP004: Total Organic Carbon		0.5	%	<0.5	2.66 %	94.4	84	106	
EP068A: Organochlorine Pesticides (OC) (QC	Lot: 3399558)								
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	88.8	71	113	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	66	122	
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	92.6	69	119	
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	89.0	71	115	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.5	65	113	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	92.1	68	116	
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	90.3	68	118	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	68	116	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	107	68	120	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	90.7	69	119	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	67	121	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	90.3	66	118	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.8	69	117	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	96.8	67	123	
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	76	120	

Page	: 5 of 7
Work Order	: ES1408817
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068A: Organochlorine Pesticides (OC) (QCLot: 339	9558) - continued								
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	97.4	76	120	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	66.4	57.3	115	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	81.9	60	124	
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	95.1	67	127	
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	83.1	65	123	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	90.0	65	129	
EP068B: Organophosphorus Pesticides (OP) (QCLot:	3399558)								
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	87.1	56	126	
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	84.0	64	128	
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	78.0	54	122	
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	80.7	64	124	
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	81.5	73	117	
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	90.5	55	119	
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	76.2	69	123	
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	87.9	70	120	
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.6	71	115	
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	96.5	68	114	
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	89.1	68	122	
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	97.6	69	115	
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	86.8	70	118	
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	91.6	68	116	
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	92.1	64	120	
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	93.9	68	116	
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	91.8	70	118	
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	93.1	67	123	
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	62.3	42	126	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (Q	CLot: 3399562)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	4 mg/kg	91.0	80	124	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	4 mg/kg	92.9	77	123	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	4 mg/kg	89.9	79	123	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	4 mg/kg	93.0	77	123	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	4 mg/kg	92.2	79	123	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	4 mg/kg	90.3	79	123	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	4 mg/kg	93.2	79	123	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	4 mg/kg	93.9	79	125	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	4 mg/kg	86.8	73	121	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	4 mg/kg	91.0	81	123	
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	4 mg/kg	85.4	70	118	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	4 mg/kg	97.3	77	123	

Page	: 6 of 7
Work Order	: ES1408817
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocart	oons (QCLot: 3399562) - con	tinued							
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	83.3	76	122	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	82.6	71	113	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	80.9	71.7	113	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	82.8	72.4	114	
EP080/071: Total Petroleum Hydrocarbons (Q	CLot: 3399559)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	90.1	68.4	128	
EP080/071: Total Petroleum Hydrocarbons (Q	CLot: 3399561)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	96.0	71	131	
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	104	74	138	
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	105	64	128	
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 (QCLot: 3399559)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	84.5	68.4	128	
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 (QCLot: 3399561	1)							
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	96.8	70	130	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	106	74	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100					
		50	mg/kg		150 mg/kg	101	63	131	
EP080: BTEXN (QCLot: 3399559)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	86.1	62	116	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	84.3	62	128	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	78.7	58	118	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	79.2	60	120	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	79.7	60	120	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	91.9	62	138	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report			
		Spike SpikeRecovery(%) Recov					imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP004: Organic M	atter (QCLot: 3402744)						
ES1408817-001	P15 TP1 0.2-0.5	EP004: Organic Matter		4.58 %	104		
		EP004: Total Organic Carbon		2.66 %	103		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Page	: 7 of 7
Work Order	: ES1408817
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE INVESTIGATION

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL	Sub-Matrix: SOIL					S) and Matrix Spi	ke Duplicate	(MSD) Repo	rt	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD)s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP004: Organic Ma	tter (QCLot: 3402744)									
ES1408817-001	P15 TP1 0.2-0.5	EP004: Organic Matter		4.58 %	104					
		EP004: Total Organic Carbon		2.66 %	103					

Work Order	: ES1408817	Page	: 1 of 8
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: STEVE CADMAN	Contact	: Client Services
Address	Eastpoint Complex Suite 19B, Level 2 50 Glebe Road PO Box 435 The Junction NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: scadman@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	:	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: HYDRO BUFFER ZONE INVESTIGATION	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 20-MAR-2014
Sampler	: KW, SC	Issue Date	: 29-APR-2014
Order number	: AS130348		
		No. of samples received	: 8
Quote number	: SY/433/13	No. of samples analysed	: 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Analysis Holding Time Compliance

Matrix: SOII

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: × = Holding time breach ; <	= Within holding time.
---	------------------------

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = Withii	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA002 : pH (Soils)								
Soil Glass Jar - Unpreserved (EA002)								
P15 TP1 0.2-0.5		18-MAR-2014	22-APR-2014	25-MAR-2014	*	25-MAR-2014	22-APR-2014	✓
EA055: Moisture Content			I					
Soil Glass Jar - Unpreserved (EA055-103)		18-MAR-2014				25-MAR-2014	01-APR-2014	
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	10-MAR-2014				25-WAR-2014	01-APR-2014	✓
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,							
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,							
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2							
EA200: AS 4964 - 2004 Identification of As	bestos in bulk samples							
Snap Lock Bag (EA200)		18-MAR-2014		14-SEP-2014		00 400 0044	20-OCT-2014	
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	18-MAR-2014		14-SEP-2014		23-APR-2014	20-001-2014	✓
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,							
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,							
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2							
ED008: Exchangeable Cations								
Soil Glass Jar - Unpreserved (ED008)		18-MAR-2014	24-APR-2014	15-APR-2014		26-MAR-2014	15-APR-2014	
P15 TP1 0.2-0.5		18-MAR-2014	24-APR-2014	13-AFR-2014	*	20-WAR-2014	13-AFR-2014	✓
EG005T: Total Metals by ICP-AES						1		
Soil Glass Jar - Unpreserved (EG005T)		18-MAR-2014	22-APR-2014	14-SEP-2014		22-APR-2014	14-SEP-2014	
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	18-MAR-2014	22-APR-2014	14-3EP-2014	~	22-APR-2014	14-3EP-2014	✓
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,							
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,							
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2							
EG035T: Total Recoverable Mercury by F	IMS							
Soil Glass Jar - Unpreserved (EG035T)								
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	18-MAR-2014	22-APR-2014	15-APR-2014	*	22-APR-2014	15-APR-2014	×
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,							
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,							
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2							
EP004: Organic Matter								
Soil Glass Jar - Unpreserved (EP004)								
P15 TP1 0.2-0.5		18-MAR-2014	23-APR-2014	15-APR-2014	*	28-MAR-2014	15-APR-2014	 ✓

Page	: 3 of 8
Work Order Client	: ES1408817 · ENVIRON AUSTRALIA PTY LTD
Project	HYDRO BUFFER ZONE INVESTIGATION

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withir	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP068A: Organochlorine Pesticides (OC)								
Soil Glass Jar - Unpreserved (EP068)								
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	18-MAR-2014	24-MAR-2014	01-APR-2014	1	19-APR-2014	03-MAY-2014	✓
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,							
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,							
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2							
EP068B: Organophosphorus Pesticides (O	P)							
Soil Glass Jar - Unpreserved (EP068)								
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	18-MAR-2014	24-MAR-2014	01-APR-2014	1	19-APR-2014	03-MAY-2014	✓
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,							
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,							
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2							
EP080/071: Total Recoverable Hydrocarbo	ns - NEPM 2013							
Soil Glass Jar - Unpreserved (EP071)								
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	18-MAR-2014	24-MAR-2014	01-APR-2014	1	20-APR-2014	03-MAY-2014	✓
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,							
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,							
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2							
EP075(SIM)B: Polynuclear Aromatic Hydro	carbons							
Soil Glass Jar - Unpreserved (EP075(SIM))								
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	18-MAR-2014	24-MAR-2014	01-APR-2014	~	19-APR-2014	03-MAY-2014	✓
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,							
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,							
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2							
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	18-MAR-2014	24-MAR-2014	01-APR-2014	~	28-APR-2014	01-APR-2014	x
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,							
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,							
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2							
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP080)								
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	18-MAR-2014	24-MAR-2014	01-APR-2014	1	28-APR-2014	01-APR-2014	×
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,							
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,							
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatior	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Exchangeable Cations with pre-treatment	ED008	1	3	33.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Organic Matter	EP004	1	3	33.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
pH (1:5)	EA002	1	3	33.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Exchangeable Cations with pre-treatment	ED008	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Organic Matter	EP004	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Exchangeable Cations with pre-treatment	ED008	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Organic Matter	EP004	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Organic Matter	EP004	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН (1:5)	EA002	SOIL	(APHA 21st ed., 4500H+) pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3) (Method 103)
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in bulk solids	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples
Exchangeable Cations with pre-treatment	ED008	SOIL	Rayment & Higginson (1992) Method 15A2. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Organic Matter	EP004	SOIL	AS1289.4.1.1 - 1997., Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3)
Pesticides by GCMS	EP068	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Exchangeable Cations Preparation Method	ED007PR	SOIL	Rayment & Higginson (1992) method 15A1. A 1M NH4Cl extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

Preparation Methods	Method	Matrix	Method Descriptions
Organic Matter	EP004-PR	SOIL	AS1289.4.1.1 - 1997., Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3) (Method 105)
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option A - Concentrating)	ORG17A	SOIL	In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EA002 : pH (Soils)							
Soil Glass Jar - Unpreserved							
P15 TP1 0.2-0.5		22-APR-2014	25-MAR-2014	28			
ED008: Exchangeable Cations							
Soil Glass Jar - Unpreserved							
P15 TP1 0.2-0.5		24-APR-2014	15-APR-2014	9			
EG035T: Total Recoverable Mercury by FIM	IS						
Soil Glass Jar - Unpreserved							
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,	22-APR-2014	15-APR-2014	7	22-APR-2014	15-APR-2014	7
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,						
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,						
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2						
EP004: Organic Matter							
Soil Glass Jar - Unpreserved							
P15 TP1 0.2-0.5		23-APR-2014	15-APR-2014	8			
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved							
P15 TP1 0.2-0.5,	P15 TP2 0.3-0.6,				28-APR-2014	01-APR-2014	27
P15 TP3 0.3-0.5,	P15 TP4 0.3-0.5,						
P15 TP5 0.3-0.5,	P15 TP6 0.3-0.5,						
P15 TP7 0.1-0.2,	P15 TP9 0.1-0.2						

Page	: 8 of 8
Work Order	: ES1408817
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE INVESTIGATION

Matrix: SOIL

Method Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Date analysed Due for analysis Days Days overdue overdue EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 - Analysis Holding Time Compliance Soil Glass Jar - Unpreserved P15 TP1 0.2-0.5, P15 TP2 0.3-0.6, 28-APR-2014 01-APR-2014 27 ------------P15 TP3 0.3-0.5, P15 TP4 0.3-0.5, P15 TP5 0.3-0.5, P15 TP6 0.3-0.5, P15 TP7 0.1-0.2, P15 TP9 0.1-0.2 EP080: BTEXN Soil Glass Jar - Unpreserved P15 TP1 0.2-0.5, P15 TP2 0.3-0.6, 28-APR-2014 01-APR-2014 27 ------------P15 TP3 0.3-0.5, P15 TP4 0.3-0.5, P15 TP5 0.3-0.5, P15 TP6 0.3-0.5, P15 TP7 0.1-0.2, P15 TP9 0.1-0.2

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

	CHAIN OF CUSTODY		forraka SA 5098 ijalsgiobal com ford OLD 4053		id nationaly QLU 4740 y@alsglobal.com I Read Stylingwole VID	177	Ph 02 4	ASTLE 5 Rose 4 968 9433 E sem	Sum Road Wera ples newçastleş	DNEWCASTLE 5 Roso Gum Road Watabrook NSW 2304 Ph 02 4968 9433 E samples newcastle@atsglobal.com		LISYDNEY 27 Ph 02 8784 85	7-289 Woodpur 55 El samples	LISYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph: 02 8764 8555 E samples sydney@atsglolaat.com		
ALS	ALS Laboratory: please tick →	Ph 07 3243 7222 E samples brisbane@afsglobal.com GGLADSTONE 46 Callemonstath Drive Clinton CLD 4680 Bio 07 3774 Econ Frontiering The Contemporation	risbane@alsglot ih Drive Clinton (art corn Ph. 03.8549 1600 E. sant des methourne 중 alsylobat com CLD 4680 UIMUDGEE 1 2만 Sydney (fond Mudgee NSW 2850	ംs melbourne ഇരിട്ടളിൽ and Mudgee NSW 285	di com	Ph 02.4	123 2063 E now	Ph. 02.4423.2063 E. nowle@olsglobal.com UPERTH 10 Hod Way Malaga, WA 6090	300 300 20142 VI 2014 I		Ph 07 4796 00	E 14-15 Desrie IOO E Iownesval	LH OWAYSVILLE 14-15 Desma Courd Bothe QLD +818 Ph 07 4796 0400 E towneydde environmewlar@ntaglobal.com UWOLLONGONG 99 Karmy Street Varienceno NSW 250	\$ _	
CLIENT: Environ Australia Pty Ltd	la Pty Ltd		TURNARC		Standard TAT // let due d		11 000	1 000 000	លើកដាក់ដំណីល	(Jupai curi	1	Ph UZ 4Zeo.	3125 E woilong	Pitr 02 4225 3125 € wottongoing @atsglebal.com		
OFFICE: 19B, 50 Glebe R	OFFICE: 19B, 50 Glebe Road, The Junction, NSW 2291		(Standard TA	ger for some tests	Non Standard or urgent TAT (List due date).	oue vate). Dent TAT (Lis	rt dun data)	-			Circle	Custody Seal Intact?	, UKI Uae c	Eustody Seel Intert?		ļ
PROJECT: Hydro Buffer Zone Investigation	Zone Investigation	PROJECT NO AS130348	ALS QUOTE NO.:				_		COC SEQUENCE NUMBER	R (Circle)	Free i	Free ice / frozen ice bricks present upon	bricks prese	ntupon Yes	8 8	
ORDER NUMBER::	AS130348 PL	PURCHASE ORDER NO .:	COUNTRY	COUNTRY OF ORIGIN:			coc	1 2	ω •	51 53	7 Rando	Random Sample Temperature on Receipt:)mperature or	ň	ว่	
PROJECT MANAGER: Steve Cadman		CONTACT PH: 49625444	H: 4962544				97 97					Other comment:			Ċ	
SAMPLER: Kate Woods/Steve Cadman	Steve Cadman	SAMPLER MOBILE: 0423583538	IOBILE: 042		RELINQUISHED BY:		RECE				ΞL	SHED BY:	~		-	ļ
COC Emailed to ALS? (YES / NO) Yes	YES / NO) Yes	EDD FORMAT (or default):	√T (or defau	ι <u>θ</u>					D							•
Email Reports to (will def	Email Reports to (will default to PM if no other addresses are listed); scadman@environcorp.com	e listed); scadman@environcor	p.com	DATENIME	IME:		DATE	Date/TIME:			DATE/TIME:	1		Swiney	dnev dnev	nois
Email Invoice to (will defa	Email Invoice to (will default to PM if no other addresses are listed): scadman@environcorp.com	isted): scadman@environcorp	.com					20/3		ြီးလို			_	Minel		
COMMENTS/SPECIAL H/	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	iAL:														5
ALS USE ONLY	SAMPL MATRIX: S	SAMPLE DETAILS MATRIX: Solid(S) Water(W)		CONTAINER INFORMATION	ON	ANALYS	IS REQUIR letals are requi	ED includin	g SUITES (r	ALYSIS REQUIRED including SUITES (NB, Suite Codes must be listed to attract suite prid Where Metals are required, specify Total (unificed boths required) or Dissolved (field filtered boths required)	s must be lis	ted to attract a	suite pric	L31403049	0004	E E
													·			
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	ГРН/ВТЕХ	PAHs	3 métals	asbestos ID	OC/OP Pesticides	sbestos 200N	HOLD	H, ČEĆ, TOC	Telephone : +61-2-8764 6555	61-2-8784	8555
	P4 Lot 422 TP1 0-0.5	17/03/2014	S		• •	-	-	-		<u> </u>	a		p			
2	P4 Lot 422 TP2 0-0.4	17/03/2014	s			-	-	-	-	-						
J	P4 Lot 422 TP3 0-0,3	17/03/2014	S		-1		-		-	-			-			
2	P4 Lot 422 TP4 0-0.3	17/03/2014	S		2	-	-	-	-	-	-			FSIND	<u>(840</u>	
v	P4 Lot 422 TP5 0-0.3	17/03/2014	s		2	-	-	-	<u> </u>						-	
6	P4 Lot 420 TP1 0-0.3	18/03/2014	s		_	-			-	<u> </u>						
(38)	P4 Lot 420 TP1 0.6-0.8	18/03/2014	s									-				
) L	P4 Lot 420 TP2 0.05-0.2	18/03/2014	S		-	-	-	-		-						
0 4	P4 Lat 420 TP3 0.05-0.25	18/03/2014	s			-	-	-	-	-		i I	-			
2	P4 Lot 420 TP4 0.05-0.25	18/03/2014	S		-	-	-	-	-	-						
10	P15 TP1 0.2-0.5	18/03/2014	s		-	-	-	-	_				-			
11	P15 TP2 0.3-0.6	18/03/2014	s				-	-	-							
				TOTAL	AL 14	11	4	Ŧ	⇒	3	N					
Water Container Codes: P = V = VOA Viel HCI Preserved; V 7 = ⊼inc Acetete Preserved Bot	Unpreserved Plastic; N = Nitric Preserv B = VOA Vial Sodium Bisulphate Preserv No: = = FDTA Preserved Software ST = St	ed Plastic: ORC = Nitric Preserved	ORC; SH = S ed; AV = Airfre	Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide/Cd Preserved Plastic; AG = Amber Glass Unpreserved; AP - Artraight Unpreserved Plastic V = VOA Viel HCI Preserved; VB = VOA Vial Sodium Bisulphile Preserved; AS = Device Base for and so for and solid Preserved Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfurit Preserved Plastic; F = Formaletynde Preserved Glass; Iz = Zine Actester Preserved Speciations - The Sodium Sector A = Device Base for and solid Preserved Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfurit Preserved Plastic; F = Formaletynde Preserved Glass;	1 Hydroxide Preserved_Amber Glass;	H = HCI pres	G = Amber Gi served Plastic	; HS = HCl pr	ved; AP - Airfin eserved Spec	light Unpreser	ved Plastic P = Sulfuric F	reserved Pla	stic; F = Fom	I aldehyde Preserved Gla	8	
Z = Zinc Acetate Preserved Bott	te; E = EDTA Preserved Bottles; ST = St	tenie Bottle; ASS = Plastic Bag for /	kold Sulphate ?	Solls: B = Unpreserved Bag: LI = Luggis ind	no Drecensed Pottle		in Codium Th			wood wowe, w		Development in the		nardenyde Preserved Gla	SS;	

Porm Piege 1 of 1

Approved Date: 27/08/2013

Phr 09 5550 0590 E. Addsate/gbilogioanic com Phr 09 5540 1077 E. modely/g5490540 com Phr 09 5540 1077 E. DIREEDURKE 2.1 Viestit Road Springena VC3171 EINO Phr 09 2543 7227E Kannale kerken/g54890640 com Phr 09 35451 6600 E. aannake neteourne/g54890640 com Phr 09 35451 6600 E. aannake neteourne/g548900640 com Phr 09 35451 6600 E. aannake neteourne/g548900640 com Phr 09 35451 6600 E. aannake netoourne/g548900640 com Phr 09 35451 6600 E. aannake neteourne/	Ph 02 4423 2083 E instruction work or materies reading and photometers of the second s	Phi 02 874 65515 angles sydaya Naka oliminiatir Yavy 2 rek Phi 02 874 65516 angles syday@alajbotai.com 2170WNSYLLE 14-15 Desma Court Bohle 01.D 4818 Phi 07 4705 0600 E townsov/es.revioumenta@at-jabotai.com	
	⊔ PERTH 10 Hod Way Malega, WA 8090 Ph: 08 9209 7655 E, samples perth⊚alsglotvil com	山WOLLONGONG 88 Kaliny Street Wallangong NSW 2500 Ph. 92 4325 3125 E. wallangong資源Akglebal.com	
TURNAROUND REQUIREMENTS : Standard TAT (List due date):		FOR LABORATORY USE ONLY (Circle)	
Non Standard or urgent		Custody Seal Intact? Yes No	NA
	COC SEQUENCE NUMBER (Circle)	oricks present upon Yes	N/A
COUNTRY OF ORIGIN: coc:	1 2 3 4 5 6 7	ot:	
OF:	1234567		
SAMPLER MOBILE: 0423583538 RELINQUISHED BY: RE	RECEIVED BY: RELING	RELINQUISHED BY: RECEIVED BY:	
DATE/TIME: DA	DATE/TIME: DATE/TIME:	TIME: DATE/TIME:	
CONTAINER INFORMATION ANALYSIS REQU	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Matals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).	t be listed to attract sulte price) Additional Information	-
		Comments on likely contaminant levels, diutions, or samples requiring specific QC analysis etc.	ĉ, Ĉ
TYPE & PRESERVATIVE TOTAL (refer to codes below) BOTTLES		TOC	
TPH/BTE PAHs	8 metals asbestos	рH, CEC,	
1 1	1 1		
-	1 1		
1 1			
-			
1 1			
	1 1 1		
	1 1		
TOTAL 0 11 11	11 11 11 0	-	
Water Container Codes: P = Unpreserved Plastic; N = Nittle Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium HydroxidsCd Preserved; S = Sodium Hydroxids Preserved; AG = Amber Glass Unpreserved; AP - Antreight Unpreserved Plastic; V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisubhate Preserved; VS = VOA Vial Suffuric Preserved; AV = Antreight Unpreserved; AV = VOA Vial Sodium Hydroxids Preserved; AV = Antreight Unpreserved; AV = Antreight AV = Antreight Unpreserved; AV = Antreight AV = Antreight Unpreserved; AV = Antreight AV = AntreightAV = Antreight AV = A	Glass Unpreserved; AP - Alfricight Unpreserved Pla ilic; HS = HCI preserved Speciation bottle; SP = Suli Thiosulfale Preserved Bottles.	lastic µfunic Preserved Plastic; F = Formaldehyde Preserved Glass;	
Image:	1 1 1 1 1 <td></td> <td>0 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 1</td>		0 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 1

Approved Dates 27/08/2013

			32	15	30	24	25	27	36	<u>52</u>	24	23	LAB ID	ALS USE ONLY	OMMENTS/SPECIA	nall invoice to (will	nail Reports to (wil	DC Emailed to ALS	MPLER: Kate Wo	PROJECT MANAGER: Steve Cadman	ORDER NUMBER::	ROJECT: Hydro BL	FFICE: 19B, 50 Gle	CLIENT: Environ Australia Pty Ltd		
			P14 TP3 0.2-0.4	P14 TP2 0.3-0.5	P14 TP1 0.3-0.5	P8 TP5 0.1-0.3	P8 TP4 0.1-0,3	P8 TP3 0.2-0.5	P8 TP2 0.2-0.5	P8 TP1 0.2-0.5	P4 Lot 16 TP7 0.2-0.4	P4 Lot 16 TP6 0.3-0.5	SAMPLE ID	S	L HANDLING/STORAGE OR DI	default to PM if no other addresse	I default to PM if no other address	COC Emailed to ALS? (YES / NO) Yes	SAMPLER: Kate Woods/Steve Cadman	R: Steve Cadman	AS130348	PROJECT: Hydro Buffer Zone Investigation	be Road, The Junction, NSW 22	stralia Pty Ltd	CHAIN OF CUSTODY ALS Laboratory: please thek →	
			19/03/2014	19/03/2014	19/03/2014	19/03/2014	19/03/2014	19/03/2014	19/03/2014	19/03/2014	18/03/2014	18/03/2014	DATE / TIME	AMPLE DETAILS RX: Solid(S) Water(W)	SPOSAL:	s are listed): scadman@environcc	es are listed); scadman@environc	EDD FOR	SAMPLER	CONTACT	PURCHASE ORDER NO.:		91		DDY Ph. 08 8555 0490 5 adeated, astropolation shows Ph. 08 8555 0490 5 adeated, astropolation Ph. 07 2343 7222 5 complex bitstane@aisglobal.com DCLAbSTIDUE 46 complex bitstane@aisglobal.com Ph. 07 2471 5000 E. glodstore@aisglobal.com	
			s	s	s	w	w.	s	s	s	s	s	MATRIX	_	_	rp.com	orp.com	MAT (or default	MOBILE: 0423	PH: 49625444	COUNTRY O	ALS QUOTI	(Standard TAT	TURNAROL	le Fornka on Jose legalsglobal com Stafford QLD 4053 s. brisbane@alsglobal ndah Drive Clinton QL ne@alsglobal.com	
TOT													TYPE & PRESERVATIVE (refer to codes below)	CONTAINER INFORMATIO							of Origin:				Ph. 07.4541.0177 E. mac/tay@alsgldsal.com CMEEDQUPGE 2-4 Weats Read Strengthe VIC 3171 Ph. 03.8549.94300 E. samples, melbourne@alsglobal.com D 4660 Ph. 02.6372.6135 E. moutree.mat@datglobal.com	
10			1	-	1		-	1	1	4	د	4	BOTTLES	N			IME		UISHED BY:				n Standard of u	undard TAT /I Le	എടിട്ടുലർല് രണ Road Springvale Vis s.melbourne இalsgio and Mudgeo NSW 28 നേമി@വട്ടുവർക്ക് രോ	
10			-	-	1	-	1	-	-	1	4	1	ТРН/ВТЕХ	ANALYS Where A											103171 1031 com	
10			-	-	1	1	-	-		1	-		PAHs	IS REQUIRE			DATE		RECEP	٩F:	COC:		t due date):		Ph 02.456 LINOWRA Ph 02.442 LIPERTH Ph 08.920	
i	 		-	<u>د</u>	-	1		-	<u> </u>	4		-	8 metals	D Including d. specify Total (:		TME		VED BY:	1 2	1 2	COC SEQUEN			8 9433 El sample 8 9433 El sample 4/13 Geary Piace 3 2063 El novra(3 7655 El sample 99 7655 El sample	
10 1			<u>ь</u>	د -	<u>د</u>	-	_	<u> </u>	 -	- -	 -	<u>+</u>	asbestos ID	SUITES (NB. Su unfiltered bollte requ						345	4	NUMBER			Ph 02.4568 9433 E samples reacessile@elegiotei.com DNOWRA.413 Geary Pisca Roth News NSW 2541 Ph 02.4423 2063 E rosma@alegiotal.com DieERTH 10 Hexi May Islakia www.6508 Ph 09.5209 7855 E samples pertugalisplotei.com	
0	!				_	_	_	-	_	_	-			ite Codes must ired) or Dissolve					RELIN	67	7		_		2541 2541	
0													HOLD	be listed to attr d (field filtered bol					QUISHED B	Other comment	tandom Sampli	- ree ice / frozer receint?	Custody Seal In		Ph 02876 GITOWNS Ph 07.479 Ph 07.479 Ph 02.42	
				-					-												e Temperature on F) ice bricks present	ALORT USE ON	NTODY LICE ON	H 8555 E samplas syl M 8555 E samplas syl MILLE 14-15 Desma C 6 0600 E townes/le e 0NGONG 99 Kenny Si 25 3125 E wollongon	
													diutions, or samples requiring specific QC analysis etc.	Additional Information			DATE/TIME-		RECEIVED BY:			Yes	Ľ	II V (Otrata)	Ph 02 8724 8550 C anappias systematication of the control of the state of the systematication of the system and the systematication of th	
	TOTAL 10 10 10 10 10 0	10 10 10 10 0	10 10 10 10 0				1 1							\Rightarrow	A A	a 1	a	a 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	a 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	RECEIVED BY: RELINQUISHED ROLL RECEIVED BY: RELINQUISHED ROLL REL	or: 1 2 3 4 6 7 Other comment: NECCEVED BY: NECCEVEND BY:<	COC: I Z S I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>	ODE I Z I S Technical subsection Technical subsection	VALUE 44.04 eVery VALUE 44.04 eVery <th co<="" td=""><td>date): FOR LABORATORY USE ONLY Creation Series (Construction Series (Construct</td></th>	<td>date): FOR LABORATORY USE ONLY Creation Series (Construction Series (Construct</td>	date): FOR LABORATORY USE ONLY Creation Series (Construction Series (Construct

	Plastic; AG = Amber Glass Unpreserved; AP - Altfreight Unpreserved Plastic	uht Linpreserved	rved; AP - Alrfrei	r Glass Unpresi	lic; AG = Ambe	reserved Plas	um Hydroxide P	Whate Container Codes: P = Uppreserved Plastic; N = Ninic Preserved Plastic; ORC = Nitic Preserved ORC; SH = Sodum Hydroxide/Cd Preserved; S = Sodum Hydroxide Preserved	SORC: SH = Sodium	Plastic: ORC = Nitric Preserved	Inpreserved Plastic; N = Nitric Preserved	Water Container Codes: P = I
	0	ω	łŋ -	ω	 د	 ن	TOTAL 5					
							$\left \right $					
-												
, , ,												
		4	1	-			1		w	19/03/2014	QA03	37
		4	1		 				w	18/03/2014	QA02	36
		~	1						S	17/03/2014	QA01	5 5
			<u> </u>						w	17/03/2014	ID2	24
			<u> </u>						w	17/03/2014	D1	<u>ر</u> د در
anauvons, or samples requining sp analysis etc.	HOLD	OC{OP Pesticides	asbestos ID	8 metals	PAHs	₩ Г ТРН/ВТЕХ	TOTAL BOTTLES	TYPE & PRESERVATIVE (refer to codes below)	MATRIX	DATE / TIME	SAMPLE ID	LAB ID
Additional Information Comments on likely contaminant levels.	INALYSIS REQUIRED Including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).	. Suite Codes mi required) or Disso	ng SUITES (NB tal (unfiltered bottle	IRED Includi squired, specify To	LYSIS REQU vare Matals are n	ANA		CONTAINER INFORMATION		SAMPLE DETAILS MATRIX: Solid(S) Waler(W)	SAMPLE MATRIX: Solk	ALS USE ONLY
						-			_		COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	COMMENTS/SPECIAL HA
).com	ted): scadman@environcorp	Email Invoice to (will default to PM if no other addresses are listed): scadman@environcorp.com	Email Invoice to (will defau
DATE/TIME:	DATE/TIME:	DAT		DATE/TIME:	DA		TIME:	DATE/TIME	'p.com	sted): scadman@environcor	Email Reports to (will default to PM if no other addresses are listed): scadman@environcorp.com	Email Reports to (will defa
									EDD FORMAT (or default):	EDD FORM	ES / NO) Yes	COC Emailed to ALS? (YES / NO) Yes
RECEIVED BY:	RELINQUISHED BY:	REL		RECEIVED BY:	RE		RELINQUISHED BY:		SAMPLER MOBILE: 0423583538	SAMPLER N	eve Cadman	SAMPLER: Kate Woods/Steve Cadman
	Other comment:	567	3 4		ę.				CONTACT PH: 49625444	CONTACT P	ve Cadman	PROJECT MANAGER: Steve Cadman
, Yes No	Random Sample Temperature on Receipt:	(undie) 5 6 7	2 3 4	- 5	coc:			RIGIN:	COUNTRY OF ORIGIN:	PURCHASE ORDER NO.:	PU	ORDER NUMBER::
Yes	Custody Seel Intact? Free ice / frozen ice bricks present i			8	TAT (List due date):		Non Standard or urgent	ionger for some tests	Calandard IA1 may be		NSW 2291	OFFICE: 198, 50 Glebe Road, The Junction, PROJECT: Hudro Buffer Zone Investigation
ILY (Circle)	FOR LABORATORY USE ONLY (Circle)				;;	List due date):	Standard TAT (List due		TURNAROUND		Pty Ltd	CLIENT: Environ Australia Pty Ltd
Carl UNCE: A FACED in Activity of Similared Reservation Phy 02 0874 8555 c. Immedia systems/astights form D1707WINSVILLE 14. t5 Dearns Court Belde QLD 3818 Ph 07 A726 0800 E. Burnerschlar environmentalitäjeligidebi con Ph 07 A726 0800 E. Burnerschlar environmentalitäjeligidebi con UNVOLLONGORD 99 Kenny Simila Violentyon NSW 2500 Ph 02 4225 3175 E. wallensomg (gelagiobal com	Ph 02 8724 8555 E samules sythey@atspicted.com DTOWNSVILLE 15 Desma Court Stolle QLD 4518 Ph 07 4750 0800 E bounced environment@allighted.com UWOLLONGONO 99 Komp Stinat Workengerig VSW 2500 Ph 02 4225 3125 E workenjong@atsglobat.com	spiebei com SW 2641 bai com	Phy C9 4589 94:33 E : annytea revensite/gateglockat.com DINOMPA 4/13 Geary Plezo North Novas NSV 2641 Ph. 02 42:33:303 E : mova@gateglobal.com DiPERTH 10 Hed Way Matega : WA 6050 Ph 05 929:765 E : samples peth@gateglobal.com Ph 05 929:765 E : samples peth@gateglobal.com	2 4968 9433 E sn WRA 4/13 Geary I 2 4423 2063 E mo RTH 10 Hed Way 8 9209 7655 E st	Ph o Ph o	vIC 3171 sglabal com v 2850 Loom	ay yynsylocar onn ar ywrisylocar onn os melbournega oed Mudgoe NSV loe mail@alsgloba	Ph 07 4944 0177 E react-wightensite for DMEE BOURRIE 2-14 vocial Road Samagade VIC 3171 Ph 03 849 5000 E Jahrny Food Mudgeo NSW 2850 UNUDGEE Into Systemy Food Mudgeo NSW 2850 Ph 02 6372 5735 E revelpeo nat@atsjabelia.com	ন্টুaisgiobai cem fford OLD 4053 xistbane@alsglobai com @alsglobai.com @alsglobai.com	Ph. 08 4559 0890 E. addiatel@Bulgiouil.com LIPBNEDAVE 2. E. asinekks limitorin@Dielosi Ph. 07 3213 7227 E. asinekks limitorin@Dielosil.com LIGLADETONE 45 Caltonorith Dirke Chrism OLD 4880 Ph. 07 7471 5600 E. gladstone@Algobal.com	ALS Laboratory: please tick >	

-

Appendix G

Test Pit Logs

		E	N	VI	RC	DN		TEST	PIT NUMBER TP1 PAGE 1 OF 1
						stralia Kurri Kurri 48 I			vestigation
DA	ATE :	STAR	TED _	18/3/ ⁻	14	COMPLETED _18/3/14 R.	L. SURFACE	I	DATUM
TE	STI		ZE			TE			
Method			Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations
						TOPSOIL FILL; CLAY; brown-medium brown, medium-high plas asphalt fragments Borehole TP1 terminated at 1.1m	sticity, trace plastic, broken	TP1 - 0.2-0.5m	

						N				PAGE 1 OF
								PROJECT NAME Hydro		vestigation
										DATUM BEARING
										8
										CHECKED BY KG
NC	DTE	s								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material Descri	ption	Samples Tests Remarks	Additional Observations
						FILL; Silty SAND; brown, fi		ne brick fragments, rock fragments	TP2 - 0.3-0.6r	

		F	N	VI	R <i>(</i>	N		TEST	PAGE 1 OF
СГ	IENT	Г_ Ну	/dro A	lumini	um Au	stralia Kurri Kurri			vestigation
DA	TE S	STAR	TED	18/3/ [,]	14	48 COMPLETED18/3/14	R.L. SURFACE		DATUM
EC	UIPI	MENT	Ba	ckhoe			TEST PIT LOCATION?	arcel 15, Lot 418	3
NC	DTES	<u> </u>			c				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Additional Observations
			-			FILL; Silty SAND; dark grey, fragments of clay,	concrete, bricks		
			-					TP3 - 0.3-0.5	n
			0 <u>.5</u>						_
			-			Alluvial SAND; yellow-brown, fine to medium g	ained, slightly moist	_	
			- 1.0			Borehole TP3 terminated at 1m		-	
			-	-					
			- 1 <u>.5</u>	-					
			-	-					
			-						
			2 <u>.0</u>	-					
			-						
			- 2 <u>.5</u>						
			-						
			-	-					

								TEST	PIT NUMBER TP4
		F	N	VI	RC	ON			PAGE 1 OF 1
	- -					Istralia Kurri Kurri		Buffer Zone Inv	restigation
						48			
						COMPLETED 18/3/14			
EX	CAV	ΑΤΙΟ	N CO	NTRA	CTOR		SLOPE	E	BEARING
		5 <u> </u>						(
Method	Water	RL	Depth	Graphic Log	Classification Symbol	Material Descripti	n	Samples Tests Remarks	Additional Observations
2	5	(m)	(m)		00	FILL; Silty CLAY; white/light grey, medium plastic	ity, some timber, steel, bricks,		
			-			concrete			
			-						
			-						_
			-					TP4 - 0.3-0.6m	
			0.5						
			-						-
			-			Alluvial SAND; light brown and yellow-brown, fine	e to medium grained, slightly		
			-			moist			
			-						
			1 <u>.0</u>						
						Borehole TP4 terminated at 1.1m			
			-						
			-	-					
			-						
			1 <u>.5</u>						
			-						
14			-						
T 9/10			-	-					
LIA.GD			-	-					
JSTRA			2 <u>.0</u>	-					
STD AL			-	-					
GINT			-						
15.GPJ			-						
RCEL 1			-	$\left \right $					
BOREHOLE / TEST PIT AS130348 PARCEL 15.GPJ GINT STD AUSTRALIA.GDT 9/10/14			2 <u>.5</u>	$\left \right $					
AS1303			-	$\left \right $					
T PIT ,			-	$\left \right $					
E / TES			-						
EHOLE			-						
BOR			3.0						

		E	N	VI	RC	DN		TES1	PAGE 1 OF 1
CL	IEN	Г_Ну	dro A	lumini	um Au				vestigation
DA	ATE S	STAR	TED _	18/3/ ⁻	14	COMPLETED _18/3/14 R.L SLO	SURFACE		DATUM
						5L			
		PIT SIZ				LO	GGED BY SC		CHECKED BY KG
Method			Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations
						FILL; Gravelly CLAY; brown and yellow-brown, medium concrete, timber, asphalt paving CLAY; yellow-brown, medium plasticity, moist Borehole TP5 terminated at 1m	n plasticity, rock fragments,	TP5 - 0.3-0.5n	

		E	N	VI	RC	DN		TEST	PIT NUMBER TP6 PAGE 1 OF 1
						istralia Kurri Kurri 148			restigation
						COMPLETED <u>18/3/14</u>			
EC	QUIP	MENT	Ba	ckhoe				Parcel 15, Lot 419	
		PIT SIZ S					LOGGED BY SC	(CHECKED BY <u>KG</u>
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material De:	scription	Samples Tests Remarks	Additional Observations
						FILL; Gravelly CLAY; yellow-brown to brow fragments, pavers, concrete, steel, plastic, Alluvial SAND; light brown, medium grained Borehole TP6 terminated at 1.5m	pockets of sand	TP6 - 0.3-0.5m	

		F	N	VI	RC	DN		TES	PAGE 1 OF 1	
СГ	IENT	Г_Ну	dro A	lumini	um Au	stralia Kurri Kurri	PROJECT NAME _ Hydro Buffer Zone Investigation			
D4 EX	ATE S CAV	Start Atio	TED _ N COI	18/3/	14 CTOR	COMPLETED <u>18/3/14</u>	_ R.L. SURFACE		DATUM BEARING	
TE		PIT SIZ					_ TEST PIT LOCATION _ Parcel 15, Lot 418 _ LOGGED BY _SC CHECKED BY _KG			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	lion	Samples Tests Remarks	Additional Observations	
			-	XXXX		ROADBASE Alluvial SAND; yellow-brown, fine-medium grair	ied, moist	TP7 - 0.1-0.2r		
			-			Borehole TP7 terminated at 0.25m				
			0 <u>.5</u>							
			-							
			1 <u>.0</u>							
			-							
			_ 1 <u>.5</u>							
/14			-							
ALIA.GDT 9/10			-							
AT STD AUSTR			2 <u>.0</u>							
EL 15.GPJ GIN			-							
S130348 PARC			2 <u>.5</u>							
BOREHOLE / TEST PIT AS130348 PARCEL 15.GPJ GINT STD AUSTRALIA.GDT 9/10/14			-							
BOREHOLE			3.0							

		F		\/I	D(DN		TEST	PAGE 1 OF 1		
CL	IEN	Г _Ну	dro A	lumini	um Au	ıstralia Kurri Kurri		PROJECT NAME _ Hydro Buffer Zone Investigation			
DA	ATE S	STAR	TED	18/3/	14	COMPLETED _ 18/3/14	R.L. SURFACE		DATUM		
EC	QUIP	MENT	Bad	ckhoe			TEST PIT LOCATION P	arcel 15, Lot 418	3		
	TEST PIT SIZE										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations		
			_			ROADBASE			_		
						Borehole TP8 terminated at 0.2m		TP8 - 0.1-0.2r	n		
			-								
			0 <u>.5</u>								
			-								
			-								
			1 <u>.0</u>								
			-								
			-								
			-								
			1 <u>.5</u>								
4			-								
601 8/10			-								
JS I KALIA.			2 <u>.0</u>								
NI SID AL			-								
5.GPJ GII			-								
PARCEL 1											
AS130348			-								
BOREHOLE / TEST PIT AS130348 PARCEL 15.GPJ GINT STD AUSTRALIA.GDT 9/10/14			-								
EHOLE / I			-								
BOR			3.0								

CLI	ENT	Hy	dro Alur				PROJECT NAME _ Hydro Buffer Zone Investigation PROJECT LOCATION _ Kurri Kurri			
DA.	TE S	TAR	TED _18	3/3/14	COMPLETED _ 18/3/14			DATUM		
					R					
TEST PIT SIZE NOTES						LOGGED BY SC				
Method	Water	RL (m)	Depth (m)	Graphic Log Classification	Material D	Description	Samples Tests Remarks	Additional Observations		
				\otimes	ROADBASE		TP9 - 0.0-0.1m	ı		
			X	×	Borehole TP9 terminated at 0.15m					
			0.5							
			_							
			1 <u>.0</u>							
			_							
			_							
			_							
			_ 1 <u>.5</u>							
			1.5							
			2 <u>.0</u>							
			_							
			_							
			2 <u>.5</u>							
			_							

Appendix H QA/QC Assessment

APPENDIX H

DATA QUALITY OBJECTIVES

To ensure that reliable data of adequate type was collected and assessed for the investigation, the seven-step Data Quality Objective (DQO) approach, endorsed in the NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme 2nd Edition, will be adopted. The DQOs set quality assurance and quality control parameters for the field and laboratory programs to ensure data of appropriate reliability will be used to assess the environmental conditions at Parcel 15.

ENVIRON has developed DQOs in accordance with the seven-step process, which is presented below.

Step 1 – State the Problem

Based on the information available from the Phase 1 ESA, uses of Parcel 15 appear to be limited to motor cycle racetrack/motor cross tracks and, historically, a dwelling. The remainder of Parcel 15 has not been developed and remains open treed land. These uses of Parcel 15 require confirmation via a site walkover and judgemental sampling. In addition, the potential for fluoride in surface soils from dust deposition from the Hydro smelter requires assessment.

Step 2 - Identification of the Goals (Decisions) of the Study

The following decisions are to be made from this study:

- Are the current and former uses of Parcel 15 consistent with site observations?
- Has Parcel 15 been impacted by fluoride from dust deposition from the Hydro smelter?
- Has Parcel 15 been impacted by other contaminants from historical/current site use?
- Is Parcel 15 suitable for general industrial and environmental conservation landuse?

Step 3 – Identify Information Inputs to the Decision or Goal of the Study

The inputs required to make the above decisions are listed below:

- A site walkover, including collection of field notes and photographs;
- Results of surface soil samples collected for fluoride analysis;
- Results of other soil samples from fill/ hummocky ground collected for suitable analysis during the site walkover;
- Proposed land use;
- Appropriate NSW contamination guidelines.

Step 4 – Define the Study Boundaries

Spatial boundaries - the study boundaries have been defined as the spatial boundary of Parcel 15, as shown on Figure 1.

Vertical boundaries – as areas of concern at Parcel 15 are restricted to surface soils, the vertical boundary of the study is the top 200mm (unless subsurface contamination issues are identified during the site walkover).

Temporal boundaries – the temporal boundary is limited to the data collected during the investigation works.

Constraints within the study boundaries – This investigation does not require investigation of subsurface soils or groundwater unless impacts to subsurface soils or groundwater are considered likely to have occurred from the historical site activities

Step 5 – Develop a Decision Rule

The decision rules for this investigation are as follows:

- If it is determined that the data generated through this investigation is reliable for use in producing a site conceptual model and assessing the suitability of Parcel 15 for general industrial and environmental conservation landuse, then an assessment of the suitability of Parcel 15 for general industrial and environmental conservation landuse will be made;
- If it is determined that the data generated through this investigation is not suitable, comprehensive or reliable for use in producing a site conceptual model, then further investigations may be recommended prior to the development of a site conceptual model and assessment of the suitability of Parcel 15 for general industrial and environmental conservation landuse.

Step 6 – Specify Performance or Acceptance Criteria that the Data need to Achieve

Acceptable limits on decision errors have been developed based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness. The DQIs for this investigation are outlined below.

The potential for significant decision errors were minimized by:

- Completion of a QA/QC assessment of the investigation data to assess if the data satisfies the DQIs;
- Assessment of whether appropriate sampling and analytical densities were completed for the purpose of the investigation; and
- Ensuring that the criteria set for the investigation were appropriate for the proposed use of Parcel 15.

Minimization of the potential for significant decision errors limits the potential that a conclusive statement may be incorrect.

Step 7 – Optimisation of the Design of Collection of Data

The collection of data was optimized by the completion of a Phase 1 ESA, data gap review and development of a sampling design, which is included in Section 4.3. Attainment of the DQOs has been assessed by reference to the DQIs, presented below.

DATA QUALITY INDICATORS

The project Data Quality Indicators (DQIs) have been established to set acceptance limits on field and laboratory data collected as part of this investigation. Field and laboratory procedures acceptance limits are set at different levels for different projects and by different laboratories. Non-compliances with acceptance limits are to be documented and discussed in the report. The DQIs are presented in Table A.

DQI	Field	Laboratory	Acceptability Limits
	All critical locations sampled,	All critical samples analysed and all	As per NEPM (2013)
	including targeted sampling of	analytes analysed according to	
	areas of environmental concern	Standard Operating Procedures	
	identified during the site walkover.	(SOPs)	
	Fluoride soil sampling completed	Appropriate Practical Quantitation	
ŝ	on a reduced density to identify if	Limits (PQLs)	
sər	fluoride in surface soils is an	Sample documentation complete	
eter	issue.	Sample holding times complied	
Completeness	All samples collected	with	
μο	Experienced sampler		
0	Documentation correct		
	Experienced sampler	Same analytical methods used	As per NEPM (2013)
>	In the event of multiple sampling	Same PQLs	
oilit	events:	Same units	
aral	Same types of samples collected	Same primary and secondary	
edu	Same sampling methodologies	laboratories	
Comparability	used		
0	Climatic conditions		
ne	Appropriate media sampled	All samples analysed according to	
ive	Relevant media sampled	SOPs	
Represe ntativene ss			
<u>т</u> с о			
	Collection of duplicate samples	Analysis of:	
_	Sampling methodologies	Blind duplicate samples at rate of 1	RPD of 30 to 50%
ion	appropriate and complied with	in 10 samples	
cis		Split duplicate samples at rate of 1	RPD of 30 to 50%
Precision		in 20 samples	
		Laboratory duplicate samples	RPD of 30 to 50%

AS130348 Z:\Projects\Hydro Australia\AS130348 Buffer Zone Investigations\Fieldwork Info Packages\EMP 2 now Parcel 15\Reporting\Final for Rezoning\AS130348 Phase 2 ESA - Parcel 15 Final for Rezoning.doc

	Sampling methodologies	Analysis of:	
	appropriate and complied with.	Method blanks	Non-detect
		Matrix spikes	70 to 130%
रु		Surrogate spikes	70-130%
Irac		Laboratory control samples	70 to 130%
ccuracy		Reagent blanks	
Ā		Reference material	

QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance assessment for this report is presented in Table B and Table C below. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines.

Sampling Methodology	Methodology
Sampling Pattern and Locations	Surface soil sampling was undertaken around the edges of Parcel 15 to assess the impact of particulate fallout from Hydro Aluminium Smelter.
	Targeted sampling was undertaken in areas of fill identified in Lot 417 and 418. A total of 6 test pits were excavated on Lot 417 and 3 pits on Lot 418.
Sampling Density	Nine soil samples were collected from an approximate grid across open areas of Parcel 15 which is approximately 35 ha. The purpose of the sampling was to assess for impacts from smelter particulate fallout and therefore is considered suitable in density and spatial layout.
	A total of nine samples were collected and analysed from 9 test pits in fill profiles identified on Lots 417 and 418. Given the homogeneous nature of the fill and its limited vertical distribution, this sampling density is considered adequate
Sample depths	Surface soil samples were collected from a grid across the entire of Parcel 15 from surface soils.
	Soil samples were collected from 0.05m to 0.25m from within the fill profiles on Lot 418 and within the raised embankments on Lot 417.
Sample Collection Method	Surface soil samples across Parcel 15 were collected directly from the ground surface using using dedicated disposable gloves and a hand trowel. The hand trowel was brushed clean prior to sample collection. Soil samples were collected into laboratory supplied, acid rinsed glass jars.
	Test pits samples (fill) were collected from the centre of the back hoe bucket using dedicated disposable gloves.
	Soil samples were collected into laboratory supplied, acid rinsed glass jars.

AS130348

Table B: QA/QC – Sampling and Analysis Methodology Assessment						
Sampling Methodology	Methodology					
Decontamination Procedures	Surface soil samples across Parcel 15 were collected directly from the ground surface using using dedicated disposable gloves and a hand trowel. The hand trowel was generally used to loosen the soil prior to sample collection and was brushed clean between sample locations. As fill soil samples were collected from the centre of the back hoe bucket, decontamination of the back hoe was not required.					
Sample handling and containers	All soil samples were placed into laboratory-supplied glass jars. Soil and water samples were placed on ice following collection and during transportation to the laboratory.					
Chain of Custody	Samples were transported to the laboratory under chain of custody conditions. The chain of custody forms were signed by the laboratory on receipt of the samples.					
Detailed description of field screening protocols	Field screening for volatiles was not completed during soil sampling as volatile contaminants were not the main chemical of concern.					
Calibration of field equipment	No field equipment requiring calibration was used.					
Sampling Logs	The lithology of surface soil samples was documented on the field information sheets, which are included in Appendix C.					

Table C: QA/QC – Field a	Table C: QA/QC – Field and Lab Quality Assurance and Quality Control						
Field and Lab QA/QC	ENVIRON Comments						
Field quality control samples	Intra-laboratory duplicate soil samples were analysed at a ratio of 1:10 for TRH, BTEX and PAHs analysed for the grid samples across the entire of Parcel 15. No rinsate blank samples were collected.						
Field quality control results	Intra-laboratory duplicate results are presented in Table D. There were no RPD exceedances for the intra-laboratory duplicates collected for this assessment.						
NATA registered laboratory and NATA endorsed methods	ALS was used as the primary laboratory. ALS laboratory certificates are NATA stamped and the lab is accredited for the analyses performed for this assessment.						
Analytical methods	A summary of analytical methods were included in the laboratory test certificates.						
Holding times	Review of the COCs and laboratory certificates indicate that holding times were met.						
Practical Quantitation Limits (PQLs)	PQLs for all soil analytes were below Parcel 15 assessment criteria.						

Table C: QA/QC – Field and Lab Quality Assurance and Quality Control						
Field and Lab QA/QC	ENVIRON Comments					
	PQLs for the surface water sample exceeded the guideline criteria for some PAHs. This is not considered to significantly impact on site results for Parcel 15 as these compounds were not identified as contaminants of concern in the soil analyses.					
Laboratory quality control samples	Laboratory quality control samples including duplicates, laboratory control samples, matrix spikes, surrogate spikes and blanks were undertaken by the laboratories at appropriate frequencies.					
Laboratory quality control results	All results for laboratory soil duplicates, laboratory control samples, matrix spikes and surrogates were acceptable and no detections were made in blank samples.					

Overall it is considered that the completed investigation works and the data obtained adequately complied with the requirements of NSW DEC (2006) and NSW EPA (2007) guidelines and that the data is of suitable quality to meet the project objectives.

Appendix I

Hazardous Materials Audit

Hazardous Materials Audit Parcel 15

Prepared for: Hydro Aluminium Kurri Kurri Pty Limited

> Prepared by: ENVIRON Australia Pty Ltd

> > Date: October 2014

Project Number: AS130348

Prepare	d by:		Authorised by:			
Name:	Shaun Taylor		Name:	Fiona Robinson		
Title:	Senior Environmental Scientist		Title:	Manager, ENVIRON	Hunter	
Phone:	02 4962 5444		Phone:	02 4962 5444		
Email:	staylor@environcorp.com		Email:	frobinson@environco	orp.com	
Signature:	Date: 0	09/10/14	Signature:	finfobison	Date:	09/10/14
	\bigcirc			1		

This document is issued in confidence to Hydro Aluminium Kurri Kurri Pty Limited for the described in Section 1.1 of this report. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of ENVIRON Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© ENVIRON Australia Pty Ltd

Document File	Date Issued	Version	Author	Reviewer
Name				
Draft Hydro Parcel 15 Hazardous Materials Audit	9 October 2014	Draft 1	S Taylor	F Robinson
Report				

VERSION CONTROL RECORD

Contents

		Page
1	Introduction	3
1.1	Objectives and Scope of Work	3
1.2	Legislative Requirements, Standards and Codes of Practice	3
1.3	Survey Methodology	3
1.4	Survey Limitations	4
2	Surveys Details	5
2.1	Buildings Descriptions	5
2.2	Survey Methodology	5
2.3	Sample Collection and Laboratory Analysis	6
3	Findings	8
3.1	Hazardous Materials Register	8
3.2	Asbestos Containing Materials	8
3.3	Synthetic Mineral Fibre Materials	8
3.4	Polychlorinated Biphenyls	8
3.5	Lead Based Paint	8
3.6	Other Observations	9
4	Recommendations	10
4.1	Asbestos Containing Materials	10
4.1.1	Building Maintenance/ Retention	10
4.1.2	Building Demolition	10
4.2	Synthetic Mineral Fibre Materials	10
4.3	Polychlorinated Biphenyls	11
4.4	Lead Based Paint	11
4.5	Dangerous Goods	11
5	References	12
6	Limitations	13
6.1	General Limitations regarding Sampling	13
6.2	User Reliance	13

List of Figures

Figure 1:	Parcel 2
Figure 2:	Kurri Kurri Speedway Buildings
Figure 3:	Kurri Kurri Junior Motorcycle Club Buildings

List of Appendices

Appendix A:	Photographs
Appendix B:	Hazardous Materials Register
Appendix C:	Laboratory Certificates

AS130348

ENVIRON

Acronyms and Abbreviations

- ACM: Asbestos containing material
- LBP: Lead based paint
- PCB: Polychlorinated biphenyl compounds
- SMF: Synthetic mineral fibre

1 Introduction

ENVIRON Australia Pty Ltd (ENVIRON) was engaged by Hydro Aluminium Kurri Kurri Pty Ltd (Hydro) to undertake a hazardous materials audit of the buildings located within Parcel 2, within the buffer zone of the former Hydro Aluminium smelter at Kurri Kurri, NSW.

1.1 Objectives and Scope of Work

The survey was undertaken in order for Hydro Aluminium to effectively manage its compliance obligations with respect to asbestos containing materials (ACM), and to identify and manage risks associated with other hazardous materials potentially present in the buildings to an acceptable level.

Hazardous materials other than ACM that were considered were polychlorinated biphenyl compounds (PCB), synthetic mineral fibre (SMF), and lead based paint (LBP).

1.2 Legislative Requirements, Standards and Codes of Practice

In NSW, management of asbestos is governed by the following principal legislation and guidance documents:

- Workplace Health and Safety Regulation 2011 (Part 8)
- Code of Practice for the Management and Control of Asbestos in Workplace (NOHSC, 2005a).
- NOHSC Code of Practice for the Safe Removal of Asbestos 2nd Edition (NOHSC, 2005b).

The following codes of practice and standards apply to the other hazardous materials:

- National Code of Practice for the Safe Use of Synthetic Mineral Fibres (NOHSC, 1990).
- Identification Of PCB-Containing Capacitors (ANZECC, 1997).
- Australian Standard AS4361.2 Guide to Lead Paint Management Residential and Commercial Buildings.

1.3 Survey Methodology

The hazardous materials survey was undertaken on structures within Parcel 2.

The survey methodology involved the following:

- An inspection of the accessible sections of the outside and inside of all buildings, as well as any accessible power boxes on power poles within the properties.
- Wherever possible, confirmation of the presence or absence of asbestos in a material was by identification in the field.
- Where the presence or absence of asbestos could not be determined in the field, a sample was taken for laboratory analysis.
- The make and model of fluorescent lighting was noted and compared against those listed in *Identification Of PCB-Containing Capacitors* (ANZECC, 1997) as having capacitors that contain PCBs.
- Visual confirmation of the presence of SMF.

ENVIRON

- The age of the building and the condition of the paint was observed and the likelihood of lead-based paint being present noted.
- While the audit focussed on structures within the parcel, any confirmed or potential hazardous materials identified in soils or outside of structures were also noted.

1.4 Survey Limitations

Any restrictions or limitations on the survey, such as access not gained to areas or areas not accessible due to safety restrictions, are outlined in Section 2.2 of this report. The reader is also referred to ENIVRON's limitations in Section 6.

2 Surveys Details

2.1 Buildings Descriptions

The hazardous materials survey was undertaken on 29 October 2013 by ENVIRON Senior Environmental Scientist Shaun Taylor.

Table 1 describes the following:

- The building type (such as residential home, shed, garage).
- Main construction materials used in construction of the building.
- An estimate as to whether the structure was built prior to 1990 (1990 is commonly regarded as a 'cut-off date' for asbestos in construction materials. It is also a good indicator as to the likelihood of PCBs being used in fluorescent lighting capacitors).
- Any areas not accessible within the building.

A total of 10 buildings within four properties were inspected for hazardous materials. Figures 2 and 3 show the locations of the listed buildings.

2.2 Survey Methodology

The methodology undertaken for the survey is described as follows.

Develop Project OHS Plan, and Survey Protocol and Survey Templates

A Health and Safety Plan was developed for the contamination and hazardous materials investigations within the buffer zone in advance of the works commencing and endorsed internally.

A hazardous materials protocol and data collection template specific to the project was developed, to ensure a consistent approach to the surveys and data collection.

Project Scheduling and Communications

Tenants' contact details were provided by Hydro and a scheduled date for the survey agreed to between ENVIRON and the tenant. Each tenant was notified of the survey program and process by Hydro (via the real estate agent) in advance. Prior to the scheduled date, ENVIRON contacted the tenant to confirm the date, arrival time, and any likely access issues or restricted areas.

Conduct Hazardous Materials Survey

The survey included a thorough visual inspection of all accessible areas of the buildings and structures, and collection of representative samples for the purpose of analytical confirmation where materials could not be visually identified.

Data Collection

Survey data collected included the type, form, location, extent/ quantity, condition and accessibility of ACM and synthetic mineral fibre products, the likely presence of PCB in fluorescent light fittings, and the likely presence of LBP. Photographs were also taken of the observed potential/ confirmed hazardous materials.

In addition, any other observations of concern (such as potential for contamination in the surrounding area) were documented.

Sample Analysis

Any asbestos sample analysis was undertaken using polarised light microscopy, in conjunction with dispersion staining techniques. Where possible, the presence of asbestos (but not the type of asbestos) was confirmed in the field.

SMF and PCB were visually identified during the surveys. The presence of lead in paint was assumed based on the likely age of the building and the condition of painted surfaces.

Areas not Accessed

During the audit, all areas of the buildings and structures within the area which were both readily accessible and safe to access were inspected. Where access was not available to areas which could potentially contain hazardous materials, the locations and the reasons for inaccessibility were noted. Any areas not accessed are documented within **Section 2** of this report.

Other Observations

In addition to the survey of structures within the property, the surveyor also noted potential issues of concern, such as:

- Evidence of subsurface hazardous materials (such as ACM service conduits).
- Evidence of hazardous material fragments/ waste in soils or elsewhere within the property.
- Other potential issues of concern (such as possible soil contamination).

2.3 Sample Collection and Laboratory Analysis

During the survey one sample was collected and analysed for the presence of asbestos (all forms) at a NATA accredited asbestos identification facility. The results of the analysis is summarised in **Section 3**, with the supporting laboratory analytical certificate contained in Appendix C.

The remaining ACM was confirmed through visual confirmation of the presence of asbestos (but not the type of asbestos) in the field.

Page 7

Table 1: Hazardous Materials Audit Building Details								
Property	Building No.	Building Type/s	Main Construction Materials	Estimated Pre or Post 1990 construction	Any Inaccessible Areas			
		Pa	arcel 2					
Kurri Kurri Speedway (Lots 416/ 417/ 418 DP755231)	1	Demountable (west side of track). Former school demountable transported onto the property by the current tenant	Metal (corrugated), compressed timber sheets, metal framing, cement sheeting.	Pre-1990 (transported onto site)	Interior not accessible.			
	2	Demountable (east side of track). Larger building, two large rooms transported onto the property by the current tenant.	Metal (corrugated), compressed timber sheets, metal framing, cement sheeting.	Pre-1990 (transported onto site)	Some parts of the interior were not accessible.			
	3	Race callers box (east side of track)	Cement sheeting, metal	Post-1990	Interior not accessible.			
	4	Various demountable toilet blocks and storage sheds, transportable.	Most are corrugated metal, one included timber.	Post-1990	Interior not accessible.			
	5	Covered vehicle maintenance area ("pit lane")	Metal	Post-1990	N/A			
Junior Motor Cycle Club (Lot 2 DP 233125)	6	Undercover race starting area	Metal	Post-1990	N/A			
	7	Portable toilets	Metal	Post-1990	Interior not accessible.			
	8	Clubhouse	Metal	Pre-1990 (due to old appearance of roof material, although this could have been re-used)	Interior not accessible.			
	9	Storage shed	Metal	Post-1990	Interior not accessible.			
	10	Undercover picnic shelter	Metal	Post-1990	N/A			

3 Findings

3.1 Hazardous Materials Register

The results of the survey are presented in **Appendix B**.

The following provides a summary of the hazardous materials identified. Representative photographs of the identified hazardous materials are provided in **Appendix A**.

3.2 Asbestos Containing Materials

Asbestos cement sheeting was found in the following locations:

- The floor to the front deck of a demountable building on the western side of the speedway track.
- The floor, internal ceiling and underside of the front awning to a demountable building on the eastern side of the speedway track.

From a review of aerial photographs, the ACM structures (demountable/ transportable buildings) have been brought onto the property since February 2010 by the current tenant.

• At two locations within demolition waste used in a gravel road in the east of the speedway property.

No potential ACMs were observed within the Junior Motorcycle Club facility.

One sample was collected for laboratory analysis from sheeting used for the caller's box on the eastern side of the speedway track. The results showed that this sheeting did not contain asbestos. The laboratory certificates are presented in **Appendix C**.

3.3 Synthetic Mineral Fibre Materials

No SMF were observed. However, the interiors of most buildings could not be accessed, and there is potential that SMF was used as insulation to wall and ceiling cavities in the demountable buildings.

3.4 Polychlorinated Biphenyls

There is potential that the fluorescent light fittings used on the older buildings at both the speedway and the junior motorcycle club may also have capacitors containing PCBs.

3.5 Lead Based Paint

Due to the expected age of most structures lead based paint is unlikely to be present. Lead based paint, however, may have been used on the older demountable buildings (those containing ACM).

AS4361.2 Guide to Lead Paint Management – Residential and Commercial Buildings notes that lead based paint was used mainly on exterior surfaces and to a lesser extent on interior doors and architraves, especially in undercoats and primers where concentrations of up to 20% lead were commonly used. It also notes that while paints produced for Australian dwellings from the 1970s onwards (and therefore applicable for this property) contain less than 1% lead, it is possible that industrial paints, having higher concentrations of lead, may have been applied to housing and commercial buildings.

ENVIRON

3.6 Other Observations

In addition to the hazardous materials observed in the buildings within the parcel, the following potential issues of concern were also identified:

- The surrounds of the speedway are poorly maintained. Drums and containers of oils and fuels are stored without bunding, and there is evidence of oil/ fuel leakage into soils.
- Various wastes (such as demolition waste and tyres) are scattered throughout the speedway facility.
- The Junior Motorcycle Club facility is generally well maintained. There are stockpiles of old tyres throughout the facility.

4 **Recommendations**

The following are general management measures to be implemented for hazardous materials management, either in the event that the building is to be retained and occupied, or the building is to be demolished.

4.1 Asbestos Containing Materials

4.1.1 Building Maintenance/ Retention

- The ACMs identified on site generally pose a health risk due to their poor condition and location.
- It is recommended that Kurri Kurri Speedway be advised of the ACM present within the structures, and their obligations under the Work Health and Safety Regulation 2011 (the requirements for asbestos management apply to both commercial and voluntary organisations).
- The National Code of Practice for the Management and Control of Asbestos in Workplaces recommends, and the Work Health and Safety Regulation 2011 requires labelling of any identified ACM in the workplace where practicable.
- It is recommended that due to the poor condition of the material, and the potential for pedestrian activity to continuously abrade the ACM used as flooring material, that the material be removed.

4.1.2 Building Demolition

• If necessary due to demolition or refurbishment works, remove identified ACMs under controlled condition using an appropriately licensed removal contractor.

This should be done by Kurri Kurri Speedway prior to relocation of the demountable/ transportable structures, in the event that they are moved off site.

- Any asbestos work is carried out in accordance with the Code of Practice for the Management and Control of Asbestos in the Workplace [NOHSC: 2018 (2005)].
- Ensure appropriately licenced removalists are used for any planned removal, and that any removal works are undertaken in accordance with the NOHSC Code of Practice for the Safe Removal of Asbestos 2nd Edition [NOHSC:2002(2005)].

4.2 Synthetic Mineral Fibre Materials

- Apply caution when entering ceiling voids and ensure contractors or persons entering ceiling voids or performing work on synthetic mineral fibre materials wear appropriate PPE, particularly if they have breathing disorders such as asthma.
- Remove any SMF debris as part of routine site housekeeping.
- Ensure contractors or persons performing work on SMF materials adhere to the guidelines outlined in the National Code of Practice for Synthetic Mineral Fibres [NOHSC 1004 (1990)], May 1990; and the Industry code of Practice for the Safe Use of Glass Wool and Rock Wool Insulation Products, April, 2003.

4.3 Polychlorinated Biphenyls

- Undamaged capacitors (containing PCBs) are unlikely to pose a health risk. Therefore they are unlikely to pose a risk if they remain in-situ.
- In the event that the light fittings are to be removed, and it is confirmed that the capacitors contain PCBs, the requirements of the *Identification Of PCB-Containing Capacitors* should be implemented for removal, temporary storage, transportation and disposal.

4.4 Lead Based Paint

The majority of buildings and structures on site are post-1990 and/ or transportable structures. Therefore LBP is unlikely to be present. However it is potentially present in those demountable buildings that contain ACM. In the event that these buildings are to be demolished or upgraded, the painted ACM would be managed in accordance with **Section 4.1.2** as asbestos containing materials. Any paint on other surfaces should not be abraded, or should be tested to determine the presence, and level, of lead in the paint.

4.5 Dangerous Goods

In accordance with the NSW *OHS Regulation 2001*, the storage, handling and transport of dangerous goods is regulated. The NSW WorkCover *Storage and Handling of Dangerous Goods: Code of Practice* provides further information. Under this legislation the tenants are responsible for the appropriate handling of dangerous goods on their lease areas. This legislation also applies to volunteer organisation.

5 References

- Australian and New Zealand Council Environment Conservation Council (ANZECC). 1997. "Identification Of PCB-Containing Capacitors".
- National Occupational Health and Safety Council. (NOHSC). 1990. "National Code of Practice for the Safe Use of Synthetic Mineral Fibres".
- National Occupational Health and Safety Council. (NOHSC). 2005a. "Code of Practice for the Management and Control of Asbestos in Workplace.
- National Occupational Health and Safety Council. (NOHSC). 2005b. "Code of Practice for the Safe Removal of Asbestos 2nd Edition".
- Standards Australia. 1998. "AS4361.2 Guide to Lead Paint Management Residential and Commercial Buildings"

6 Limitations

ENVIRON Australia prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Limited dated 18 September 2013 and in accordance with our understanding and interpretation of current regulatory standards.

The audit included an inspection of accessible sections of the structures, and included sampling and laboratory analyses of materials to confirm the presence or absence of hazardous materials. While every care has been taken, not all parts of the building are accessible (such as within wall cavities). We cannot therefore preclude the presence of hazardous materials not identified within this report.

This report is based on conditions encountered at the site at the time of the report and ENVIRON disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent ENVIRON's professional judgement based on information made available during the course of this assignment and are true and correct to the best of ENVIRON's knowledge as at the date of the assessment.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

6.1 General Limitations regarding Sampling

It is not always possible to locate all hazardous materials in the course of an inspection, due to factors such as:

- Restrictions on access to internal construction components and other inaccessible parts of structures.
- Restrictions to access due to presence of tenant's belongings.
- The need to avoid damage in occupied buildings, such as when attempting to inspect behind wall panels or under carpets.
- Minimising inconvenience when premises are occupied or are in use whilst an inspection is being conducted.
- The availability of building/plant construction plans.

6.2 User Reliance

This report has been prepared exclusively for Hydro Aluminium Kurri Kurri Pty Ltd and may not be relied upon by any other person or entity without ENVIRON's express written permission.

Figures

Hydro Aluminium Kurri Kurri Pty Limited October 2014

Figure 1. Parcel 15



Figure 2. Kurri Kurri Speedway Buildings

Hydro Aluminium Kurri Kurri Pty Limited October 2014

Figure 3. Kurri Kurri Junior Motorcycle Club Buildings

Appendix A

Photographs

Photo 1: Floor to front deck to the western demountable building

Photo 2: Underside to awning to the eastern demountable building

Photo 3: Ceiling lining to the eastern demountable building

Photo 4: Example of ACM fragments in gravel road in the east of the speedway property

Photo 5: Fluorescent light to the front deck to the western demountable building

Appendix B

Hazardous Materials Register

Glossary of Terms and Abbreviations Used in Registers

The following provides an explanation of terms and abbreviations used in the registers.

Location	The location within the building (e.g bathroom) and the use of the material (e.g. floor covering, soffit lining, pipe lagging)							
ACM	Asbestos containing material							
Bonded	Refers to ACM with its fibres firmly bound within the host media.							
AC sheeting	Asbestos cement sheeting							
Condition	Refers to the physical state or condition of the material in accordance with the following:							
	Good – material shows no, or very minor damage and/or deterioration							
	Fair – material shows signs of minor damage and/or deterioration							
	• Poor – material shows sign of significant damaged and/or deterioration or the material is partly or wholly unserviceable for its intended use.							
Description	Description of the material identified e.g. vinyl tile, fibre cement sheeting etc.							
Friable	ACM that may be crumbled pulverised or reduced to powder by hand pressure.							
LBP	Lead based paint:							
Result	Refers to result of ACM or LBP analysis.							
	• For asbestos, this is the type identified during laboratory analysis. The three main commercial asbestos types found in Australia area: chrysotile (CH-white), amosite (A-brown or grey), and crocidolite (C-blue).							
	NAD means no asbestos was detected during laboratory analysis.							
	• Materials shown as 'Refer to' have not been sampled but visually appear the same as other material previously sampled.							
	• 'Assumed' refers to those materials not sampled (e.g. for safety reasons or restricted access) and which are not similar to previously sampled materials; or refers to paint that is assumed to be LBP due to building age and paint condition.							
	• 'Field' means ACM where asbestos fibres identified in field but the type of asbestos not confirmed.							
	• 'Potential' refers to fluorescent lights where it is assumed that PCBs are present due to their apparent age.							
РСВ	Polychlorinated Biphenyls							
Risk	Refers to the level of risk posed by the material based on its condition. friability, accessibility and other factors such as exposure to disturbance. The levels of risk adopted for the survey are Urgent (U), High (H), Medium (M) and low (L) as defined in Appendix C of this report.							
SMF	Synthetic mineral fibre							
Type of Material	The type of hazardous material (ACM, SMF, PCB or LBP).							

Appendix C

Laboratory Certificates

CERTIFICATE OF ANALYSIS

Work Order	[:] EN1304129	Page	: 1 of 3
Client	ENVIRON	Laboratory	: Environmental Division Newcastle
Contact	: MR STEVE CADMAN	Contact	: Peter Keyte
Address	: PO Box 435	Address	5/585 Maitland Road Mayfield West NSW Australia 2304
	THE JUNCTION NSW 2291		
E-mail	: scadman@environcorp.com	E-mail	: peter.keyte@als.com.au
Telephone	:	Telephone	: 61-2-4968-9433
Facsimile	:	Facsimile	: +61-2-4968 0349
Project	: AS130348 - HYDRO ALUMIUM BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 08-NOV-2013
Sampler	: S TAYLOR	Issue Date	: 14-NOV-2013
Site	:		
		No. of samples received	:1
Quote number	: SY/433/13	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

• Descriptive Results

	NATA Accredited Laboratory 825 Accredited for compliance with	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing h carried out in compliance with procedures specified in 21 CFR Part 11.									
	ISO/IEC 17025.	Signatories	Position	Accreditation Category							
		Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos							
WORLD RECOGNISED											

Address 5/585 Maitland Road Mayfield West NSW Australia 2304 | PHONE +61 2 4014 2500 | Facsimile +61 2 4968 0349 Environmental Division Newcastle ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.

Analytical Results

Sub-Matrix: SOLID (Matrix: SOIL)		Clie	ent sample ID	EMP2-ACM-03	 	
	Cl	ient sampli	ng date / time	29-OCT-2013 00:00	 	
Compound	CAS Number	LOR	Unit	EN1304129-001	 	
EA200: AS 4964 - 2004 Identification of A	Asbestos in bulk	samples				
Asbestos Detected	1332-21-4	0.1	g/kg	No	 	
Asbestos Type	1332-21-4	0.1		-	 	
Sample weight (dry)		0.01	g	35.0	 	
APPROVED IDENTIFIER:		-		S.SPOONER	 	

Analytical Results

Descriptive Results

Sub-Matrix: SOLID

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results							
EA200: AS 4964 - 2004 Identification of Asbestos	s in bulk samples								
EA200: Description	EMP2-ACM-03 - 29-OCT-2013 00:00	One piece of organic fibre board with cement containing synthetic mineral fibres attached to one side							
		approximately 90 x 63 x 5 mm.							

	INTERPRETIVE (QUALITY CONTROL I	REPORT
Work Order	: EN1304129	Page	: 1 of 5
Client	: ENVIRON	Laboratory	: Environmental Division Newcastle
Contact	MR STEVE CADMAN	Contact	: Peter Keyte
Address	: PO Box 435	Address	: 5/585 Maitland Road Mayfield West NSW Australia 2304
	THE JUNCTION NSW 2291		
E-mail	: scadman@environcorp.com	E-mail	: peter.keyte@als.com.au
Telephone	:	Telephone	: 61-2-4968-9433
Facsimile	:	Facsimile	: +61-2-4968 0349
Project	: AS130348 - HYDRO ALUMIUM BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 08-NOV-2013
Sampler	: S TAYLOR	Issue Date	: 14-NOV-2013
Order number	:		
		No. of samples received	:1
Quote number	: SY/433/13	No. of samples analysed	:1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 5/585 Maitland Road Mayfield West NSW Australia 2304 PHONE +61 2 4014 2500 Facsimile +61 2 4968 0349 Environmental Division Newcastle ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

Analysis Holding Time Compliance

Matrix: SOIL

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

						,			
Method	Sample Date	Ex	traction / Preparation		Analysis				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples									
Snap Lock Bag (EA200)	29-OCT-2013		27-APR-2014		14-NOV-2013	13-MAY-2014	,		
EMP2-ACM-03	29-001-2013		27-AFR-2014		14-NOV-2013	13-IVIA 1-2014	✓		

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix:		Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification						
Quality Control Sample Type		Со	unt		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Asbestos Identification in bulk solids	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

QUALITY CONTROL REPORT

Work Order	: EN1304129	Page	: 1 of 4
Client	ENVIRON	Laboratory	: Environmental Division Newcastle
Contact	: MR STEVE CADMAN	Contact	: Peter Keyte
Address	: PO Box 435	Address	5/585 Maitland Road Mayfield West NSW Australia 2304
	THE JUNCTION NSW 2291		
E-mail	: scadman@environcorp.com	E-mail	: peter.keyte@als.com.au
Telephone	:	Telephone	61-2-4968-9433
Facsimile	:	Facsimile	: +61-2-4968 0349
Project	: AS130348 - HYDRO ALUMIUM BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 08-NOV-2013
Sampler	: S TAYLOR	Issue Date	: 14-NOV-2013
Order number	:		
		No. of samples received	: 1
Quote number	: SY/433/13	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories NATA Accredited

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir Laboratory 825 compliance with procedures specified in 21 CFR Part 11.

Accredited for	Signatories	Position	Accreditation Category
compliance with ISO/IEC 17025.	Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos

ACCREDITATION

Address 5/585 Maitland Road Mayfield West NSW Australia 2304 PHONE +61 2 4014 2500 Facsimile +61 2 4968 0349 Environmental Division Newcastle ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

• No Method Blank (MB) or Laboratory Control Spike (SCS) Results are required to be reported.

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) Results are required to be reported.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

LIMACKAY 78 Harbour Road Mackay OLD 4740 Defet WCASTLE 5 Rose Gun Road Warabrook NSW 2304 LISYDNEY 277-289 Woodpark Read Smithfield NSW 2164 PIN: 07:4944 0177 E: mae/casy@alsglobal.com PiN: 02:4968 9433 E: samples newcrath@alsglobal.com PiN: 02:8784 8555 E: samples sydrey@alsglobal.com PIN: 07:4944 0177 E: mae/casy@alsglobal.com PiN: 02:8784 8555 E: samples sydrey@alsglobal.com PiN: 02:8784 8555 E: samples sydrey@alsglobal.com DMEEDUNEY 2:4 Weadain Road Sympayea in C : 171 DNVRN.LIE: 14:15 Deams Dates to C : 2784 8555 E: samples sydrey@alsglobal.com PIN: 02:8789 800 E: apples new new alsw 2530 Pices North Now al SWY 2541 DTVMSN.LIE: 14:15 Deams Dates to C : 2784 8555 E: annoles sydrey@alsglobal.com Loom PIN: 02:8789 800 E: apples new new new alsw 2530 Pices North Now alsw 2530 Pices North Now alsw 2530 Pices North Now alsw 2540 Pices North Now alsw 2540 Pices North Now 2432 2035 E: now agglesglobal.com PIN: 07:4796 000 E: 12:9 strest worthmail@alsglobal.com Loom PIN: 02:852 E: t/29 Sydrey Read Mudges NV 8:300 P: 08 2008 7555 E: samples sethiologisted obal.com DWOLLONOONC 98 Kenny Sincet Worthmail@alsglobal.com D 4660 PIN: 02:4225 815 E: wordpore North@alsglobal.com PIN: 02:4225 3125 E: wordpore 020 PiN: 02:425 2125 E: wordpore 020 PiN: 02:425 3125 E: wordpore 020 PiN: 02:425 3125 E: wordpore 020 PiN: 02:425 PiN: 02:40 PiN: 02:425 PiN: 02:425 PiN: 02:425 PiN	IND REQUIREMENTS : Standard TAT (List due date): FOR LABORATORY USE ONLY (Circle)	□ Non Standard or urgent TAT (List due date):	E NO.: COC SEQUENCE NUMBER (Circle) Free les /frozen les bricks present upon Yes No MA	Coc: 1 2 3 4 5 6 7	44 Oher comment.	386 663 RELINQUISHED Y: J RECEIVED BY: RELINQUISHED BY: RELINQUISHED BY:		پني	a11/17 2/1/13 100		CONTAINER INFORMATION ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Additional Information Where Medals are required, specify Total (unfilteed bottle required). Additional Information	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.	TYPE & PRESERVATIVE TOTAL (refer to codes below) BOTTLES	50j89Q2	B 1 X Environmental Division	Work Order	EN1304129					
MEWCASTLE 5 Rose Gum Ro Ph. 02 4968 9433 E: samples ne Ph. 02 4968 9433 E: samples ne DNOWRA 4/13 2063Y Disac Noi Ph. 02 4923 SUB E: non-a@ale Ph. 02 4923 PS Ph. 02 4923 PS Ph. 02 4973 PS Ph. 03 4973 PS Ph. 04 WW Malaga Ph. 08 9209 7655 E: samples pS		date):	COC SEQUENCE NU	123	1 2	RECEIVED BY:	G			((QUIRED including SUITE • required, specify Total (unfiltere											
m male VIC 3171 șalsglobal.com SW 2850 bal.com	ist due date):	urgent TAT (List due o)				ANALYSIS REC Where Metals ar			soteada	84 ×			 	 	 		
oad Mackay QLD kay@alsglobal.co tall Road Springve ples.melbourne@ Road Mudgee NS gee.mail@alsglob	ndard TAT (Li	Standard or		C		UISHED Y	Ź	ME _j	イニ		N		TOTAL		-			 	 		 	 7
Q	N	(Standard TAT may be longer for some tests Dor. Ultra Trace Organics)	TE NO.:	COUNTRY OF ORIGIN: Australia	5444		it):	рател	911				TYPE & PRESERVATIVE (refer to codes below)		ß							101
I Pooraka SA 506 @alsglobal.com afford CLD 4053 .brisbane@alsglo dah Drive Clinton e@alsglobal.com	TURNARC	(Standard TA	ALS QUOTE NO .:	COUNTRY	CONTACT PH: 02 4962 5444	SAMPLER MOBILE: 0408 386 663	EDD FORMAT (or default):	com	ma				MATRIX		s						 	
CADELAIDE 21 Burme Road Pooraka SA 5095 Pr. 08 8359 0590 E: adeaida@alsglobal.com DBNSBANE 2 Byh Snesi Stafford OLD 4053 Ph. 07 3423 7222 E: samples britebane@alsglobal.com DC.ADSTONE 48 Calemondah Dhve Clinton OLD 4660 Ph. 07 7471 5600 E: gladstone@alsglobal.com			PROJECT NO.: AS130348	PURCHASE ORDER NO.:	CONTACT	SAMPLER	EDD FORM	sted): staylor@environcorp.	ted): klewis@environcorp.cu		DETAILS I(S) Water(W)		DATE / TIME		29/10/2013 0:00							
CHAIN OF CUSTODY ALS Laboratory: please tick >	a Pty Ltd			PURCHASE	a Robinson		s / 🚯	Email Reports to (will default to PM if no other addresses are listed): staylor@environcorp.com	Email Invoice to (will default to PM if no other addresses are listed): klewis@environcorp.com	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	SAMPLE DETALS MATRIX: Solid(S) Water(W)		SAMPLE ID		EMP2-ACM-03							
v Ci	CLIENT: ENVIRON Australia Pty Ltd	OFFICE: Newcastle	PROJECT: Hydro Alumium Buffer Zone	ORDER NUMBER:	PROJECT MANAGER: Fiona Robinson	SAMPLER: Shaun Taylor	COC Emailed to ALS? (YES / 🔞	Email Reports to (will default	Email Invoice to (will default	COMMENTS/SPECIAL HAN	ALS USE ONLY		LAB ID									

Approved Date: 27/08/2013

Form Page 1 of 1

Date of	Sector/			Type of					Est.	Photo		Result/ Type
	Area	Property Address	Building Name/ No.		Form of Haz Mat	Location	Description/ Condition	Accessibility			Sample No.	of ACM
									2			
		Lots 416/ 417/ 418 DP755231						Readily accessible, the floor to the front				
29/10/2013	Parcel 15	(Speedway)	Demountable 1 (west side of track)	ACM	Sheeting (thick)	Floor to the deck at the front of the demountable	pedestrian movement, with flaking paint. Edges damaged.	deck	20m2	Photo 1	N/A	Field
		Lots 416/ 417/ 418 DP755231										
29/10/2013	Parcel 15		Demountable 1 (west side of track)	PCB	Fluoro Light	One external and multiple internal fluorusecent light	Good condition	Out of reach (approx 2.4m from floor)	4	Photo 5	N/A	Assumed
			1			· · · · · · · · · · · · · · · · · · ·					1	
							Poor condition, with significant damage to the awning section					
		Lots 416/ 417/ 418 DP755231				Lining to the underside of the front awning and	(large section cracked and missing). Plastic and timber strips to			Photos 2		
29/10/2013	Parcel 15	(Speedway)	Demountable 2 (east side of track)	ACM	Sheeting	internal ceiling	edges, some have come away from the ACM.	Out of reach (approx 2.4m from floor)	150m2	and 3	N/A	Field
		Lots 416/ 417/ 418 DP755231						Readily accessible, the floor to the front				
29/10/2013	Parcel 15	(Speedway)	Demountable 2 (east side of track)	ACM	Sheeting (thick)	Floor to the deck at the front of the demountable	pedestrian movement, with flaking paint. Edges damaged.	deck	40m2	N/A	N/A	Field
		Lots 416/ 417/ 418 DP755231				Four internal fluorusecent lights visible (others may						
29/10/2013	Parcel 15	(Speedway)	Demountable 2 (east side of track)	PCB	Fluoro Light	be present in inaccessible rooms)	Good condition	Out of reach (approx 2.4m from floor)	4 to 8	Photo 3	N/A	Assumed
20/10/2012			Gravel track immediately west of Demountable 2	ACM	Sheeting (fragments)	Fragments scattered throughout demolition waste	Poor condition; various fragments spread over a large area		твс			e
29/10/2013	Parcel 15	(Speedway) Lots 416/ 417/ 418 DP755231	Gravel track in west of Lot 418 DP755231	ACM	Sneeting (tragments)	used in gravel road Some fragments within demolition waste north of	within the section of the track.	Readily accessible	IBC	Photo 4	N/A	Field
29/10/2013	Dennel 15	LOTS 416/ 41// 418 DP/55231 (Speedway)	used to access Junior Motorcycle Club	ACM	Sheeting (fragments)	some tragments within demolition waste north of the access	Poor condition: various fragments	Readily accessible	твс	Photo 4	N/A	Field
23/10/2013	Faice 15	Lots 416/ 417/ 418 DP755231	used to access Junior Motorcycle club	ACIVI		Exterior wall lining to the caller's box, eastern side of	Poor condition, various rragments	Readily accessible	TBC	FIIOLO 4	19/75	Field
29/10/2013	Parcel 15		Callers Box	ACM	Sheeting	the track	Fair: minor damage, edges concreted	Reafily accessible	30m2	N/A	EMP2-ACM-03	NAD
		Lot 2 DP 233125 (Junior Motorcycle				Various external locations and likely to be present						
29/10/2013	Parcel 15	Club)	Various buildings	PCB	Fluoro Lights	within buildings (inaccesible)	Good and TBC	Out of reach (approx 2.4m from floor)	твс	N/A	N/A	Assumed
			-									
		1	1			1		1				
	1	1	1	1	1		1	1	1		1	1